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ABSTRACT

This thesis evaluates a possible use of artificial neural networks for military manpower and

personnel analysis. Two neural network models were constructed to predict the reenlistment behavior

of a select group of individuals in the Navy, from a sample of 680 individuals. The data were

extracted from the 1985 DoD Survey of Officer and Enlisted Personnel. Explanatory variables were

grouped into demographic/personal, military characteristics, perceived probability of civilian

employment, educational level, and satisfaction with military life and military benefits. The first

neural network model was compared to a more traditional method of statistical modeling (logistic

regression analysis) to determine the strengths and weaknesses of the neural network model. Both

models used the same set of 17 variables and were tested using a holdout sample of 100 observations.

The neural network model was found to be comparable to the logistic regression model as a predictor,

but deficient as a policy analysis model.

The second neural network model was constructed using the same data set and architecture as

the first neural network model, including the original 17 variables, plus an additional 11 variables that

consisted of variables with and without theoretical foundation for predicting reenlistment. The two

neural network models were then compared and found to be similar at predicting reenlistment. Both

neural network models were considered to be deficient as tools for policy analysts.
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I INTROZ'UCTION

A. BACKGROUND

Military manpower and personnel analysts are continually

attempting to find accurate methods of measuring manpower and

personnel relationships. In today's tight budgetary

environment accnracy is even more critical. For example,

inaccurately predicting reenlistments c.uld result in paying

excessive reenlistment bonuses, or in having too few personnel

in specific rates or ratings. Results such as these will

ultimately cot the Navy money.

M-Wnpower and personnel planners do not have accurate

measures of all important manpower and personnel

relationships, but they do have tools that are useful for

estimating many of these important relationships. Such

forecasting is primarily accomplished by using econometric

models, often based on regression analysis. Depending upon

their ise and the level of accuracy required, these models may

be simple or complex. Useful models quantify cause and effect

relationships in a dynamic environment. However, it is not

enough to know, for example, that an increase in the

reenlistment bonus results in increased reenlistment rates.

Military manpower and personnel planners must know how much a

unit increase in a reenlistment bonus multiple will increase
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reenlistment, or how much increased advertisinq in a specific

geographic area will increase enlistment.

One relatively new possibility for estimating important

manpower and personnel relationships is the use of artificial

neural networks for data analysis. Since 1990 federal

agencies have spent tens of millions of dollars on artificial

neural network research. The Defense Advanced Research

Projects agency has spent 33 million dollars since 1990, and

plans to spend another 45 million dollars to market neural

network chips, develop new algorithms and test real-world

applications of artificial neural networks.

Artificial neural networks applications are being explored

throughout the Federal government. For example:

"* The Army is testing artificial neural networks for an
automatic target recognition system on the Comanche
helicopter

"* The Federal Bureau of Investigation is receiving bids for
a prototype artificial neural network system to classify
fingerprints

"* The U.S. Postal Service is exploring the use of artificial

neural networks for handwriting recognition.[Ref. 1)

Currently, artificial neural networks are used in areas

such as securities trading, bankruptcy prediction, credit

applications rating, and portfolio management. These areas

are similar to manpower and personnel analysis in that they

involve examining large sets of data and determining causal

relationships between variables.

NeuralWare, a leading artificial neural network program,

2



claims that artificial neural networks:

improve the speed and accuracy of any decision that is
data intensive, time intensive, and quality dependent.
Neural networks can even tell you why a decision was made
and what input was important. The end result is a marked
improvement over conventional methods such as regression
analysis, clustering, unequal promotion techniques, or
other linear analysis. [Ref. 2)

Nearly all neural network programs on the market advertise

that their programs are user friendly and require little or no

knowledge of statistical analysis. If manufacturer assertions

are true then artificial neural networks have the potential to

increase the effectiveness of military manpower and personnel

planners.

On February 2nd and 3rd of 1993, the first annual

conference on artificial neural networks in military manpower

and personnel analysis was held at the Navy Personnel Research

and Development Center, in San Diego, California. This

conference focused on the theory behind the use of artificial

neural networks as modeling tools, current studies comparing

artificial neural networks to more traditional forms of data

analysis models, and future uses of artificial neural networks

in military manpower and personnel analysis.

B. THESIS OBJECTIVES

The objective of this thesis is to evaluate a possible use

of artificial neural networks for military manpower and

personnel analysis. Recently, artificial neural networks

have been receiving increased attention for a variety of
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research problems. However, before using artificial neural

networks in the military manpower and personnel research area,

they should be intensely scrutinized to determine that they

are not misleading or dangerous as tools for the military

analyst. In this thesis an assessment of artificial neural

networks for military manpower and personnel analysis will be

made and a possible use for artificial neural networks in this

area will be explored.

C. RESEARCH QUESTIONS

This thesis will attempt to answer the following

questions:

"* Do artificial neural network programs such as NeuralWare
enhance military manpower and personnel analysis?

"* What are the strengths and weaknesses of an artificial
neural program for data analysis?

"* How does the resulting model generated by an artificial
neural network program compare with a model generated by
conventional data analysis techniques?

D. ORGANIZATION OF THE STUDY

The first phase of this thesis explores artificial neural

networks in general. Chapter II describes what artificial

neural networks are, how they operate, and in what areas they

generally have been used. Chapter III reviews the literature

that is pertinent to the remainder of this thesis.

The second, and analytical phase of the thesis, makes a

comparison between two artificial neural network models and a
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more traditional model to determine the strengths and

weaknesses of artificial neural networks for data analysis.

Chapter IV sets out the basic methodology used in the

comparison and describes the data set used to construct the

models. Chapter V describes the traditional model, in this

case logistic regression, used for comparison with the

artificial neural network models. Chapter VI explains how the

artificial neural network models were formulated to solve the

chosen problem, of predicting reenlistment.

The final portion of the thesis is an assessment of the

usefulness and accuracy of neural network data analysis

programs for military manpower and personnel analysis.

Chapter VII compares the artificial neural network models and

the logistic regression model to determine the strengths and

weaknesses of the artificial neural network models. Chapter

VIII sets forth the conclusions about the efficacy of

artificial neural networks for military manpower and personnel

analysis and makes recommendations as to their further study

and use.

5



II. NEURAL NETWORKS

A. INTRODUCTION

This chapter describes the basics of neural networks and

how they function. Essentially there are two types of neural

networks: biological neural networks and artificial neural

networks. The human brain is an example of a biological neural

network, composed of billions of neurons organized in a

fashion so that it can perform complex tasks such as vision

and speech recognition.[Ref. 3;p. 29] Artificial neural

networks are a product of attempts to enable computers to do

the types of things that the human brain does well.

Computers are high speed, serial machines designed to

carry out a set of instructions, one after another, extremely

rapidly. They can typically carry out millions of operations

per second, which enables them to be very good at tasks such

as adding long lists of large numbers. However, unlike the

human brain, computers are not good at complex tasks such as

pattern recognition. This is because the problem of pattern

recognition is a parallel one, requiring the processing of

many different items of information which all interact to form

a solution.[Ref. 4;p. 3]

The early goal of neural computing was to model the human

brain and to capture the underlying principles that allow it
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to solve complex problems. Early artificial neural networks

consisted of individual electronic devices; the neurons were

actual hardware in the computer. The first "neural network"

was built in 1951 by Martin Minsky and Dean Edmonds. It was

a large scale device that consisted of 300 tubes, motors,

clutches and a gyro from a World War II bomber, all used to

move 40 control knobs. The position of these knobs

represented the memory of the machine.[Ref. 4;p. 47]

Today, artificial neural networks are composed of a set of

computer instructions which simulates the neurons and the

connections between the neurons. Information is stored as

patterns, not a series of information bits as in normal

computer programs. An artificial neural network does not work

using a series of instructions, instead the network

architecture and training method determine how the system will

work. Artificial neural networks do not have separate memory

for storing data; data is stored throughout the system in

patterns.

1. Biological Neurons

The human brain contains approximately 10 billion

(1010) basic units called neurons. Each of these neurons is

connected on average to about 10,000 (104) other neurons.

Biological neurons are complicated devices that have a number

of parts, sub-systems and control mechanisms. The operation

of the biological neuron is a complicated and not fully
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understood process, but the basic details are simple. The

neuron accepts inputs and adds them up in some fashion. If

the neuron receives enough active inputs at once, the neuron

will be stimulated and "fire;" if not the neuron will remain

in an inactive state.[Ref. 4;p. 5]

A representation of the basic components of a

biological neuron, the soma, the axon, synapses, and

dendrites, is shown in Figure 1.

Representation of a Biological Neuron

Figure 1

A brain neuron receives signals from many other

neurons through synapses, which regulate how much of each

8



incoming signal passes to the dendrites, which are the input

channels to the soma. The soma is the body of the neuron. In

the soma, incoming signals are added up and a determination

made of when and how to respond to the inputs. When the

neuron "fires," a pulse is sent down the axon, an extension of

the nerve cell body. The axon is the output channel of the

neuron, carrying impulses to other neurons in the brain.

2. Artificial Neurons

Artificial network neurons work in much the same way

as biological neurons. A typical neuron used in artificial

neural networks is shown in Figure 2. The neuron is receiving

six distinct inputs from other neurons. This neuron is shown

sending an output to six other neurons in the system.

Artificial Neuron Internal Representation

tWeighted Total Activation Activation Transfer

Sum of - Function -Function
Inputs Input Value -

Inputs Output
Input to other
1- 6 Neurons

Figure 2
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The inputs may be excitatory, tending to increase the

activity of the neuron, or inhibitory, tending to decrease the

neuron's activity. Once in the neuron, the inputs are

weighted and combined into a single value in the box labeled

weighted sum of inputs. Usually the inputs are simply

multiplied by some weight and added together, but in some

artificial neurons the calculation is more complex.

Inhibitory signals can have a negative value, and thus can be

added to excitatory signals but reduce the activation value.

The result is the total input, which is transformed by another

function know as the activation function.

The activation function specifies what the neuron is

to do with the signals after the weights have had their

effect. In the simplest models the activation function is the

weighted sum of the neuron's inputs; the previous state is not

taken into account. In more complicated models, the

activation function also uses the previous output value of the

neuron, so that the neuron can self-excite. In most

artificial neural networks the activation function is

deterministic, but may be stochastic in more complex networks.

The activation value is then passed through the neuron

transfer function.[Ref. 3;p. 84]

The transfer function defines how the activation value

is output to the rest of the network. In some models the

transfer function is a threshold function, or an "all or

nothing" function. If the activation value is greater than

10



some threshold amount then the neuron will output a one;

conversely an activation value less than the threshold value

will result in a zero output. In this model the neuron's

activation must reach a certain level before the neuron adds

to the total network state.

Most common artificial neural networks use a transfer

function known as the saturation function in which more

excitation above some maximum firing level has no further

effect on the output of the neuron. Examples of saturation

functions that are widely used in artificial neural networks

today are the sigmoid function and the hyperbolic tangent

function (Tan H). These functions yield output which is a

continuous, monotonic function of the input. Both the

functions and their derivatives are continuous everywhere, and

their values asymptotically approach a high and low value,

with a smooth transition in between. The sigmoid transfer

function's output (shown in Figure 3) approaches zero when its

input is a large negative number, and approaches one when the

input is a large positive number. The Tan H transfer

function's output (shown in Figure 3) approaches negative one

when its input is a large negative number, and approaches

positive one when its input is a large positive number. The

sigmoid transfer function is typically employed in those

networks which are used for classification, while "-he Tan H

transfer function is used in those networks involved in

prediction.[Ref. 3;p. 87]

11



Common Transfer Functions

+1 +1

0

o -1

Sigmoid Function Hyperbolic (Tan H) Function

Figure 3

Artificial neurons are sometimes compared to latches.

A latch is a digital circuit with a feedback loop which causes

it to retain or store its state. A latch can hold that piece

of data indefinitely. Neurons do not hold specific on/off

information, instead they keep track of how they respond to

the neurons connected to them and fire based upon their input.

When a neuron fires it sends out a signal. The length of time

spent firing a signal is constant but the overall firing

frequency is variable. Higher firing frequencies signal that

the neuron is more excited.(Ref. 3;p. 19]
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B. CHARACTERISTICS OF ARTIFICIAL NEURAL NETWORKS

1. Terms and Definitions

Many types of artificial neural networks exist today.

It is beneficial to understand some of the terms that define

and describe different types of neural networks before

discussing them in detail. Various terms and simple

definitions that describe behavior and abilities are presented

in the remainder of this section.

Adaptability is the ability to modify a response to

changing conditions in the network. Four separate processes

produce this ability: Learning, training, self-organization,

and generalization. Learning is the process by which a

network modifies its connection weights in the activation

function of the neuron. There are two types of learning:

supervised and unsupervised. Supervised learning is

characterized by an outside influence (either a set of

training facts or an observer) telling the network whether or

not its output is correct. The network's output is compared

to the correct output, and the synaptic weights in the

individual neurons are adjusted to make the next output closer

to the desired output. In unsupervised learning the network

does not use a set of training facts nor is it coached by an

outside observer. Rather, it classifies inputs as patterns

that share common features with other input patterns, with no

regard to actual output.[Ref. 3;p. 88, 219, and 223)
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Training is the process in which the connection

weights are modified in some fashion, using the learning

*Aethod. Self-organization is how artificial neural networks

train themselves according to the learning rule. Typically

all of the network's neuron weights are modified at the same

time.

Generalization is the network's ability to classify

patterns that have not been previously presented to the

network. Networks generalize by comparing input patterns to

the patterns held In the synaptic weights of the individual

neurons. A pattern that the network previously has not seen

is classified with other patterns that share the same

distinguishing features as those on which the r'twork has been

trained.

In typical computers, if a sector of memory is lost,

the program will fail. However, an artificial neural network

will continue to function, but at a reduced speed and

capacity. Plasticity is the ability of a group of neurons to

adapt to different functions over time. When a portion of the

network is damaged, other neurons adapt to take over functions

that the damaged portions performed. Fault tolerance is the

ability to keep processing, at a reducel speed and capacity,

when a portion of the network is damaged.[Ref. 3;p. 88)

Most training data sets will typically have outliers

in the data, that is, observations that are outside the

"normal" range for the set of observations. Dynamic stability

14



is the ability of the network to be given an extreme

observation and yet remain within its functional boundaries

and reach a stable state. Convergence is the changing state

of the network as it moves towards that steady state.

2. Layers

A neural network consists of groups of neurons

arranged in structural units known as layers. A layer of

neurons is a group of neurons that share a functional feature.

There are three possible types of neurons in a neural network,

each type relating to the layer in which it lies in the

network. The input layer neurons receive data from the

outside world, from data files, keyboards or other

transmitting devices. The output layer neurons send

inf ormation back to the user in a f orm def ined by the setup of

the network. The hidden layer neurons are all of the neurons

lying in the layer (s) between the input and output layers.

Neural networks may have only one hidden layer, no hidden

layers, or many hidden layers, u-pending on the architecture

and complexity of the network and the computing capacity of

the user computer. The user will not see the inputs and

outputs of the hidden neurons because chey connect only to

other neurons.[Ref. 3;p 79)

3. Network Architecture

Artificial neural networks fall into one of two basic

network architectures, feed- forward and feedback. Feed-

15



forward networks have two or more layers, each of which

receives input from the preceding layer, and sends output to

the succeeding one. These types of networks have no

connections between neurons in the same layer. Each neuron in

one layer is connected to every neuron of the succeeding

layer. Thus, the network only feeds information forward in

the network to the next layer of neurons. Feed-forward

networks compute results very quickly because there is no

delay while the neurons interact with each other and settle

into a steady state.[Ref. 4;p. 7-9] An example of a feed-

forward neural network is shown in Figure 4.

In a feed-forward network, results are computed by

first entering values to the input neurons. The input neurons

calculate their output values which are passed to the hidden

layer neurons. Each hidden neuron sums the values of the

input neurons, based on the weighing factor of each separate

hidden neuron. The connection weights, stored in the

activation function, comprise the knowledge stored in this

type of artificial neural network. These connection weights

correspond to the synapses in biological neural networks.

When the hidden neurons are finished computing their results,

they are passed to the output layer neurons. The output

neurons compute their results in the same manner, based upon

the weighted sum of the signals from the h-dden neurons.[Ref.

3;p. 153]
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Feed-forward Neural Network

t Hidden Output
Layer Layers Layer

Figure 4

Feedback networks are characterized by neurons which

take their inputs from any other neuron, even from themselves.

Inputs are given to the network and the results are computed

repeatedly until the network neurons settle into a stable

state. Feedback networks are good at reconstructing facts

from incomplete and error filled inputs.

4. Network Classification and Description

This section explains the various classifications of

artificial neural networks shown in Figure 5, and briefly

explains the theories behind the networks. Because this

thesis uses the backpropagation learning algorithm as its

basic artificial neural network, much of the remainder of this

section is devoted to backpropagation and its predecessor, the
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Artificial Neural Networks

Feed-Forward Feedback

Linear Non-Unear Constructed Trained

Perceptron Backpropagation Hopfield Adaptive
Networks Resonance

Theory

Figure 5

perceptron. A basic mathematical foundation for these types

of artificial neural networks is provided. The remainder of

this section provides a short description of other artificial

neural networks not used in this thesis, but used in other

areas today.

a. Perceptrons

The perceptron, developed in 1957 by Frank

Rosenblatt of Cornell University, was the result of one of the

first major research projects in the field of artificial

neural networks. A simple perceptron neuron with two inputs

and one output is shown in Figure 6. The term X0 is always

positive one, and the weight W0 is referred to as the bias,

and operates like the constant in a regression equation.
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Simple Perceptron Neuron and
Step Transfer Function

X0 1, 1>0
I-Wo+X I W +X 2W2  f(,)- {, <1>0

x 1

X 2 Simple Perceptron Step Transfer

Neuron Function

Figure 6

The perceptron network is essentially a linear

separator. If we assume a simple network with two neurons in

the input layer and one neuron in the output layer, the

network can be used to separate the two classes of output

shown in Figure 7.

When the network begins with random weights,

occasionally the inputs to the network will result in a

correct output. However, some of the input combinations will

result in incorrect outputs. In these cases the weights need

to be adjusted so that future sets of inputs will yield

correct outputs. This adjustment of weights is referred to as

learning. The learning algorithm for the perceptron network,

as modified by Widrow and Hoff in 1960 follows:
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Two Linearly Separable Classes

Class A

AA
AAA

f RRR R Class SR
SR R R R

Figure 7

0. Randomly initialize the weights and the bias

1. Present an input pattern (x,,X,... ,) and a desired
output dý to the network

2. Calculate the actual output of input t, y,, from the

network: yi=f [(XaW4

3. Compute the error of output t, et: e,=d1 -y,

4. Compute the new weights for input t+l:
Wj+ 1=Wt+ae tX• where a is the learning rate, O<a<l

5. Repeat steps one through four for each new input pattern
(XI IX2, ... Ix,

6. Repeat steps one through five until error is less than

some preset tolerance.

For the above example d1=l if the desired output is

from class A, and d1=O if the desired output is from class R.

If W, and W2 initially are randomly set to one and the bias is
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set to zero, the initial line will have a slope of negative

one and an intercept of zero. As the perceptron is fed input

patterns and learning is accomplished through the Widrow Hoff

delta rule, the line separating the two categories will

gradually shift until the slope is equal to -X2 /Xl, and the

intercept is equal to -W%. This gradual shifting of the

linear separator is shown in Figure 8. Line one (Li) is the

beginning line, with initial weights of positive one, and line

five (L5) is the hypothetical ending line that the network

produces that separates class A from class R.

Two Linearly Separable Classes

Class A

A A A L
AA A RAL

AiS RC I s

R RRR

L2

Li

Figure 8

As previously stated, the perceptron was the result

of early work in the field of artificial neural networks. As

with any model, the perceptron has limitations to its
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capabilities. It will learn a solution if the problem is

linearly separable. In many cases however, the separation

between classes is much more complex. The classic simple

problem that the perceptron is unable to solve is the case of

the exclusive-or (XOR) problem. The XOR logic function has

two inputs and one output. It produces an output only if

either one or the other of the inputs is on, but does not

produce an output if both inputs are off or both inputs are

on. The exclusive-or problem is shown in both tabular and

graphic form in Figure 9.

Exclusive-Or Problem

q X Y

0 0 0

0 1 1

1 0 1

1 0

Figure 9

The logical sequel to the simple perceptron was a

multi-layer network of simple perceptrons. Intuitively it can

be seen that a multiple layered network with the right weights
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would be able to solve the XOR problem. Such a network, with

the correct weights to solve the XOR problem, is shown in

Figure 10.

Recoding XOR into a
Lineraly Separable Problem

+1 +1 0 0 0 0 0

1 0 1 0 1

0 1 0 1 1
+1' 1- +1

1 1 0 0 0

Figure 10

The drawback to this network is that the weights

must be correctly set or "hard coded" so that the input data

is mapped into a linearly separable space. If the weights are

randomly set at the start, the network will be unable to

learn. This is because there is a credit assignment problem

inherent in a multi-layer network with neurons that have a

step transfer function. The "on" or "off" state of the

neurons give no indication of the scale by which the weights

need to be adjusted for incorrect output. The step transfer
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function thus removes the information about the input that is

needed if the network is to learn.[Ref. 4;p. 65)

Minsky and Papert in Perceptrons (Ref 5] pointed

out the limitations and criticisms of single and multiple

layer perceptron networks. They demonstrated that perceptrons

could only do linearly separable problems; this was the "brick

wall" that the artificial neLeil network field of study ran

into in the 1960's. Dur•. 4 this time however, large strides

were being made in the field of artificial intelligence,

solving many of the problems that perceptrons could not. Thus

gradually most of the major funding shifted from the study of

artificial neural networks to artificial intelligence during

the following twenty years.

Relying heavily on pre-processing inputs to form

nearly linearly separable sets of data, perceptron artificial

neural networks have been used in various applications. These

include research of speech recognition, character recognition

and adaptive noise filtering. Also, in Japan a university

researcher has used a perceptron artificial neural network to

build robots that have learned to walk.(Ref. 6)

b. Backpropagation

In 1986 a breakthrough in the study of artificial

neural networks was put forth by Rumelhart, McClelland, and

Williams in their book Parallel Distributed Processing [Ref

7). Their breakthrough was a way to use a smooth transfer
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function in a multi-layer perceptron network, combined with a

learning rule which "backpropagated" the error from the output

layer to the input layer, thus solving the credit-assignment

problem.

The term "backpropagation" refers to a type of

learning algorithm for adjusting the weights in a multiple

layer feed-forward network. However, the term has become

synonymous with the type of network itself, and will be used

in this context for the remainder of the thesis.

In backpropagation, the responsibility for output

error is assumed to be the problem of all the connection

weights in the network. Errors are calculated at the output

layer, then using a sum of products to the previous layer, the

previous artificial neurons are assigned error. The errors

are then used in adjusting the incoming weights so as to

produce an output closer to the correct output for the next

set of learning inputs.[Ref 6]

Two of the most common transfer functions used in

backpropagation are the sigmoid and the Tan H transfer

functions discussed earlier in this chapter. These transfer

functions have relatively simple, continuous derivatives.

These derivatives are the basis for the backpropagation

learning algorithm; they are used to assign error to each of

the artificial neurons in the network. An artificial neuron

that uses the sigmoid transfer function is shown in Figure 11.
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Backpropagation Neuron Using a

Sigmoid Transfer Function

Xn-1,1 M- _

n-l,j

Where:
X O- output of the Ith neuron In the nth layer

W.. - weight of the output of the jth neuron in the
n,ij (n-1)st layer to the ith neuron in the nth layer

Figure 11

The general procedure for backpropagation follows:

0. Initialize weights, W,,ij, randomly

1. Present an input pattern (X,,X2,... ,X and a desired
output dý to the network

2. Calculate the actual output for the input pattern
(XIX2t, ... IX) , y,, from the network: y,=f[(EXgW

3. Compute the total sum of squares error for the network

for input t, et: ei=0.5*SUM,(d-yj)

4. Calculate AW.,ij (Described in following paragraphs)

5. Feedback: Correct the weights
W0,ij (new) =W,,ij (old) +AW*,ij

6. Repeat steps one through five for all training patterns

7. Repeat steps one through six until the error is less
than some pre-determined tolerance.

The basic formula for changing the weights is:
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AW,,ij=alpha * X,_,i * e,,i

where: X•,1i= output from neuron i of layer n-i

e,,= error of neuron j in layer n

alpha = learning rate, O<alpha<l

There are two formulas for calculating a specific

neuron's error. The formula for a neuron's error in the

output layer is directly proportional to the difference

between the desired output and the actual output of the output

neuron. It also depends on the derivative of the transfer

function for the neuron in the output layer. This formula is:

e,,1=f'I (Z1,,,,) * (d1-yj)

The formula for a neuron's error in any layer below

the output is proportional to the backpropagated error. This

means that the error in these nodes depends on the errors of

the nodes above and the connecting weights to the above nodes.

The neuron's error in any layer below the output layer also

depends upon the derivative of its transfer function at its

current output level. This formula is:

ej,n=f ' (Zj,a) *SUM (ek,a+,*Wk,,a+I)

Thus, the change in an incoming weight is proportional to the

error of a neuron times the value of the input on the

connection being adjusted.

One modification to the backpropagation procedure,

developed to avoid local minima in the error structure is the

"generalized Delta rule." This modification adds a momentum
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term to the change in the W.ij 's This momentum term is a

constant, P, multiplied by the weight vector of a neuron from

the previous presentation of an input pattern, which is then

added to the next change in the weights to avoid local minima

in the error structure. The new formula for changing the

weights by the generalized Delta rule is:

AW.,ij=alpha * X•.i * f+ [W..ij-W.iij(.)p

Backpropagation is thus able to solve the XOR

problem because outputs from the neurons can take on

intermediate values between either zero and one (for the

sigmoidal transfer function), or negative one and positive one

(for the Tan H transfer function). This allows a network to

slowly readjust its weights in the individual neurons, and to

move down the error structure until some preset error

tolerance level is reached.

The number of applications for multiple layer,

backpropagating artificial neural networks is continually

increasing. Some of the areas in which they have been used

are sonar interpretation, machine vision, converting english

text to phonemes, airline seat marketing, and forecasting in

the economic and banking aceas. They have applications in

pattern classification, modeling complex non-linear functions,

and signal processing problems. Additionally, they are

beginning to see wide use in the field of robotics.[Ref. 7)
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c. Hopfield Networks

Hopfield networks are fully-connected feedback

networks. They consist of a number of neurons, each connected

to every other neuron in the network. They are symmetrically

weighted networks, each link from one neuron to another having

the same weight in both directions.

The Hopfield Network

Figure 12

Figure 12 shows a fully connected Hopfield network.

The major distinguishing feature of the network is that there

are no obvious input and output neurons, and this architecture

defines how the network will operate. Inputs to the network

are applied to all of the neurons at once, consisting of a set

of starting values, either positive one or negative one. The
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network is allowed to cycle through a succession of states

until it converges on a steady state solution (if one

exists!). This steady state occurs when the values of the

neurons no longer change. Because each neuron is connected to

all other neurons in the system, the output value of one

neuron affects the value of all others. The initial, unstable

state is characterized by many different values each affecting

each other. As the net moves through a succession of states

it is trying to reach a compromise between all the values in

the network, and the final steady state represents the

solution to the inputs. In this state there are as many

inputs trying to turn on a neuron as there are inputs trying

to turn it off, so it remains in a stable, steady state.[Ref.

4;p. 133-135)

Hopfield networks have seen limited commercial

applications because of the relatively short amount of time

that researchers have been working in this area. Hopfield

networks have applications in the field of simulated

annealing, or the process used to improve the characteristics

of crystals or metals. Because of their high tolerance of

partial damage to the network, Hopfield networks hold great

promise in the field of space-based electronic and robotics

systems, where radiation damage to computer chips is a

possible occurrence.

30



d. Adaptive Resonance Theory

The adaptive resonance theory is a two-layered,

feedback network type. The major feature of the adaptive

resonance theory is the ability to switch from a plastic mode,

where internal parameters of the network can be modified, to

a stable mode where the internal mechanics of the network are

fixed, without losing any previous learning.

Adaptive Resonance Theory

0~UT 0O0• yer

IF AL IFReset

Test

lnp• Input Layer

Figure 13

An adaptive resonance theory network, shown in

Figure 13, has two layers whic> are connected with extensive

use of feedback. Feedback flows from the output layer to the

input layer, and also between neurons in the output layer. An
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adaptive resonance theory network is a combination of a feed-

forward network, and a feedback network, but is classified

here as a feedback network because of its extensive use of

feedback not found in other types of feed-forward networks.

For each layer there are logic control circuits

that control the movement of the data through the layers at

each stage of the operating cycle. Between the input and

output layers there is a reset circuit responsible for

comparing the inputs to a threshold that determines whether a

new class pattern should be created for an input pattern. [Ref.

4;p. 167-1693

Adaptive resonance theory is a self-organizing

network that has been able to solve the stability-plasticity

dilemma, and has been applied to several pattern recognition

problems in a laboratory setting. Adaptive resonance theory

networks have not been used in commercial applications,

probably due to the newness of the theory.

C. OPERATION OF A NEURAL NETWORK

The normal operation of a neural network is a selective

response to a signal pattern. How each specific network

learns is determined by type of connections between the

neuron, the weight assigned to a signal, and the rules which

change the input function.

An example which helps to explain the operation of a

neural network is that of a network trained to predict a
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dependent numerical output from a set of inputs, or

explanatory variables. A feed-forward, backpropagating

network is used in this case. Each of the explanatory

variables is assigned to an input neuron, which in turn sends

signals to the next layer of neurons, the hidden layer. Each

hidden neuron receives signals from all the neurons in the

preceding layer. The signals are assigned connection weights

and summed in the activation function of the neuron. If the

activation value is greater than the threshold value, the

neuron "fires" and sends a signal to the next layer. If less

than the threshold value, the neuron remains in an inactive

state. Once all of the inputs have been passed through the

hidden layer the outputs are sent to the output layer of

neurons.

The output layer of neurons, in this case only the one

neuron associated with the dependent variable that is being

predicted, is compared to a value known as the training value.

The training value is the actual value of the dependent

variable for tl.e explanatory variables in the observation. In

the back propagation learning method the predicted value is

compared with the actual value of the dependent variable, and

if there is a difference, an error signal is fed back

throughout the network, altering the connection weights in

each of the neuron's activation functions. The network

iteratively moves to the next observation in the data set,

until a pattern is formed and the network can successfully
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predict and match all of the output values to their actual

values.

At this point the network is considered trained and ready

for testing by the user. Testing is accomplished in much the

same manner as training. A separate testing data set with new

explanatory and dependent observations is input into the

network. The predicted outputs are compared with the actual

dependent values to determine how well the network is

performing on data separate from the training data set.

The next chapter presents a review of the pertinent

literature that compares the use of neural networks to more

traditional methods of statistical modeling.
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III. LITERATURE REVIEW

A. INTRODUCTION

The prediction of manpower and personnel behavior is a

necessity in the military decision making process. Typically

these predictions are made using some type of multiple

regression model, with cause and effect relationships

hypothesized between the independent and dependent variables.

However these regression models have various problems

associated with them. First and foremost is the choice of the

underlying functional form of the model. If the researcher

incorrectly specifies this initial formation of the model, the

model will be much less likely to perform well as a predictive

tool. Other problems with regression are the assumptions that

must be made in order for regression to be a valid prediction

technique. Normality and independence of the error term, and

constancy of the error variance are assumptions which are

often made (and frequently not tested) when using regression

models.

Neural networks allow predictive models to be created

without a priori knowledge of the functional form.

Assumptions about normality, independence, and constancy are

not required in the neural network model. For these reasons,
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neural networks should be examined to determine their efficacy

as a tool for helping the military decision maker.

The use of neural network models as a tool for analyzing

data sets is a relatively new field. The development of the

error backpropagation learning algorithm, by Rumelhart,

McCelland and Williams in 1986 [Ref. 6], opened the research

area for many new applications of neural networks. However,

only a small number of researchers have compared the use of

neural networks to traditional data analysis techniques in the

area of military manpower and personnel research. The

recently held, first annual conference on neural networks in

military manpower and personnel analysis at NPRDC highlighted

awareness in the field that neural networks are a new modeling

tool that needs to be evaluated. This thesis is an effort to

provide an evaluation of neural networks as a modeling tool

for the military manpower analyst.

This chapter reviews the pertinent literature comparing

neural networks and traditional military manpower and

personnel modeling techniques. In addition, it reviews other

literature which compares neural network models with

multivariate and bivariate analytical techniques in the fields

of bankruptcy prediction, bond rating, and stock price

predictions. These areas share many characteristics with

military manpower and personnel analysis. Both manpower and

personnel analysis, and economic analysis typically involve

the interaction of many unrelated variables, making prediction
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difficult and complex. For this reason, it is worthwhile to

review the results of studies comparing neural networks to

traditional data analysis techniques in fields other than

military data analysis.

B. COMPARISONS OF NEURAL NETWORKS AND CLASSICAL FORECASTING

METHODS IN THE MILITARY

Dickieson and Wilkins (Ref. 8] compare neural networks

with multiple regression in the prediction of premature

attrition from the U.S. Naval Academy. Both types of models

were developed using the same seven explanatory variables

currently in use by the Naval Academy.' The dependent

variable for the study, voluntary attrition, is dichotomous.

The study uses the data of three recent classes from the

academy, referred to in the study as classes I, II, and III.

(Ref. 8;p. 67]

The regression model used for this study is based on

stepwise ordinary least squares (OLS) regression, essentially

the same model now used by the academy. The model is

estimated using data from class I, then cross-validated using

data from class III. The correlation between predicted

attrition and actual attrition in this model was found to be

.0561. The authors explain that the correlation coefficient

'These variables are SAT-verbal, SAT-quantitative, high school
rank in class, recommendations from high school officials,
extracurricular activity score, technical interest score, and
career interest score.

37



is small because attrition is difficult to predict, it is a

dichotomous variable, and because few people actually are

prematurely discharged from the Naval Academy.[Ref. 8;p. 68]

The construction of neural networks is often described as

more of an art than a science. Choices must be made as to

what type of architecture to use, the number of hidden layers,

and number of neurons in each hidden layer. This study uses

six different neural networks to determine their impact upon

whether neural networks outperform regression in predicting

attrition from the Naval Academy. Table 1 shows the various

characteristics of these models.

TABLE 1: NEURAL NETWORK'S CHARACTERISTICS
Network Architecture Inputs Hidden Hidden Outputs

Layer 1 Layer 2

1 Backpropagation 7 14 0 1

2 Backpropagation 7 7 0 1

3 Functional Link 7 7 0 1

4 Functional Link 7 4 3 1

5 Backpropagation 7 21 0 1

6 Backpropagation 7 2 0 1
Source: Dickieson and Wilkins (1992)

In developing neural network models for this problem, two

different stopping criteria are used. The six neural network

models are developed using data from Class I, and then cross

validated on Class II data to determine the separate stopping

criteria. Criterion A is the number of iterations which

produced the maximum cross-validation correlation coefficient
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between predicted and actual attrition. Criterion B is the

midpoint of the range of iterations for which the neural

network model outperformed the linear regression model for

Class II data.[Ref. 8;p. 69]

After the two stopping criteria are developed, the six

neural network models are cross validated on the Class III

data to determine the predictive efficacy of the models. For

all six networks, criteria A and B yield correlations higher

than those provided by linear regression. The results of both

the neural network models and the linear regression model are

shown in Table 2.

TABLE 2: CLASS III CROSS-VALIDATED CORRELATION
COEFFICIENTS

Network Regression NN-Criterion A NN-Criterion B

1 .0561 .0846 .0806

2 .0561 .0806 .0762

3 .0561 .0854 .0858

4 .0561 .0577 .0577

5 .0561 .0860 .0759

6 .0561 .0657 .0657
Source: Dickieson and Wilkins (1992)

The results of this study show that neural network models

can have a higher predictive efficacy than stepwise linear

regression. However a more plausible regression model may

have yielded better results. In light of the dichotomous

dependent variable, a logistic form of model rather than a
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linear model may have yielded a higher correlation between

predicted and actual attrition.

Wiggins and Engquist (Ref. 9] compared neural networks to

probit regression analysis in predicting the reenlistment

decisions of first-term Air Force airmen. Both types of

models are constructed using 18 independent variables to

capture the economic and Air Force policy conditions at the

time each airman made a reenlistment decision. The variables

included pecuniary factors, demographic factors, aptitude,

experience, and the quarter in which the reenlistment decision

was made. The models were estimated using data which covered

the January 1975 through March 1982 time period, and validated

the resulting models over the April 1982 to March 1986 time

period data.

Each of the major Air Force Specialties (AFS's) were

modeled using a separate probit equation estimated on

individual level data for all airmen in an AFS eligible to

make a decision during the estimation sample time frame. The

resulting probit equations were used to predict the

reenlistment decisions of airmen eligible to make reenlistment

decisions over the validation sample time frame.

Three neural network models were created using the

backpropagation .earning algorithm, each with different

criteria for stopping training. The first, BP Hold, computed

the validation sample root mean square error (RMSE) after each

training pass through the estimation sample data. Training
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was stopped when the RMSE was minimized. The other two

models, BP Tri-sample and BP Temporal split the original

estimation sample into a pre-estimation sample and a pre-

validation sample. The BP Tri-sample model randomly split the

original estimation sample into the two subsamples, while the

BP temporal model split the samples so that they covered two

separate time periods. For both the BP Tri-sample and the BP

Temporal models training was done only on the pre-estimation

sample, and testing tracked the RMSE of the pre-validation

sample. When this RMSE was minimized the network was

retrained on the full estimation sample, and training was

stopped when the RMSE from the full estimation sample matched

the RMSE from the pre-validation sample.

Wiggins and Engquist used simulation R2 to measure the

performance of each model's predictions. An R2 of one implies

a perfect fit whereas a zero implies a model which performs no

better than the in-sample mean.

R2 =1-_ (Predicted1-Actuali)2

1 (ActualMean-Actuali)2

The validation sample results of the neural networks

compared to the probit models are shown in Table 3. None of

the simulated R2 were very high, and all of the models had

very low explanatory power, as is often the case with

individual level data. In virtually all cases the neural
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network models performed better than the probit models

currently in use.

TABLE 3: VALIDATION SAMPLE RESULTS

AFS Simulation R2 by Modeling Technique
Network Probit BP Hold BP Tri- BP

Sample Temporal

Air Traffic .139 .222 .154 .205
Control

Missile System -. 194 .116 -. 173 -. 035
Maintenance

Jet Engine .269 .368 .141 .365
Mechanic

Communications .155 .244 .241 .316
Electronics

Vehicle .198 .331 .300 .312
Maintenance

Source: Wiggins and Engquist (1993)

C. COMPARISONS OF NEURAL NETWORKS TO CLASSICAL FORECASTING

METHODS IN SELECTED CIVILIAN AREAS

Several studies have been done com)i ing neural networks

with classical forecasting methods in areas outside of

military manpower and personnel analysis. These areas include

bond rating, bankruptcy prediction, and stock price

prediction. These areas have some common characteristics with

military forecasting areas, which allow them to be reviewed in

the context of this thesis.

Surkan and Singleton [Ref. 10) compare neural networks to

multivariate discriminant analysis at the task of separating

two non-contiguous classes of bonds. Bond ratings have both
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economic significance, as higher ratings command lower

interest rates, and investor interest, as investors wish to

anticipate changes in interest rates due to changes in company

circumstances.

For this research Surkan and Singleton collected data on

the eighteen Bell Telephone operating companies divested by

American Telephone and Telegraph Company (AT&T) in 1982, for

the years from 1982 through 1987. They use the seven

dependant variables related to leverage, coverage, and

profitability which are taken into account by the major rating

companies (Moody's or Standard and Poor's) when awarding bond

ratings. Those variables and their definitions are shown in

Table 4. In both the linear discriminant and the neural

network model these seven variables were used to predict

whether a bond would be assigned a highest quality (Aaa)

(group one or a medium quality (Aal, Aa2, or Aa3) [group two

rating.

Linear discriminant functions are estimated using the two

bond groups as dependent variables and the seven financial

ratios as explanatory variables. Fifty-six observations were

used in a hold-one-out approach by iteratively calculating the

model over 55 observations and classifying the 56th. The

discriminant models correctly predicted 12 of 30 for group one

(40%), 10 of 26 for group two (38%), and 22 of 56 overall

(39%).
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TABLE 4: MODEL VARIABLES AND THEIR DEFINITIONS

Variable Definition

LEVERAGE Debt divided by total capital - a measure of the
bondholders' security

COVERAGE Pre-tax interest expense divided by income - a
measure of the company's ability to pay
bondholders from current income

ROE Return on equity or income - a profitability
measure

CV of Coefficient of variation of ROE calculated over
ROE the past five years - an indication of the

stability of profitability

TA Logarithm of the total assets - a measure of
size

FLOW Construction costs divided by total cash inflow
- a measure of the capacity for func.
construction costs without increased borrowing

TOLL Toll revenue ratio - an indication of the effect
of divestiture on profitability

Source: Surkan and Singleton (1990)

Three neural network models were created for this

analysis. All three models used backpropagation as the model

architecture, with seven input neurons and two output neurons,

one for each input or output variable. Model one used one

hidden layer with 14 neurons in that layer, while models two

and three used two hidden layers. Model two used five and ten

neurons in its respective hidden layers, while model three was

constructed with ten and five neurons in the two hidden

layers. The 56 observations used to build the discriminant

analysis model were used to train the three neural network

models. These neural network models were then tested on a

holdout sample of 20 observations each, for group one and

44



group two data, previously unknown to the neural network

models. Results for both the neural network models and the

discriminant analysis model are shown in Table 5.

As shown in Table 5, neural network models significantly

out-performed linear discriminant models in all cases. A

shortcoming with this study is that no forecasts were made on

the holdout sample (40 observations) with the linear

discriminant model. A better test would have built a single

linear discriminant model with the first 56 observations and

tested the model on both the holdout sample and the model

building sample. This would have allowed a direct comparison

of the neural network models with the linear discriminant

model over a sample new to each model.

Odom and Sharda [Ref. 11) compare neural networks to

multivariate discriminant analysis at the task of bankruptcy

risk prediction. Failure analysis of banking firms using

financial ratios are used by management, prospective

investors, and auditors. Ratio analysis is the most common

technique used to predict whether or not an institution will

become bankrupt.

Bankruptcy prediction is most commonly done using

discriminant analysis of five financial ratios obtained from

accounting data. 2  For this study data were obtained from

2These ratios are:
1. Working Capital/Total Assets
2. Retained Earnings/Total Assets
3. Earnings before Interest and Taxes/Total Assets
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Moody's Industriales Manuals on 129 firms. The sample

consisted of 65 bankrupt and 64 nonbankrupt firms. This

sample was further split into two subsamples, a training set

of 38 bankrupt and 36 nonbankrupt firms, and a testing set of

27 bankrupt and 28 nonbankrupt firms.

TABLE 5: CLASSIFICATION ACCURACY RESULTS

Network NN-7,14,2 NN-7,5,10,2 NN-7,10,5,2 Linear
Analysis

Bond Class Training Sample (56 Observations)

Highest (27) (28) (30) (12)
[90% [93% [100% (40%

Medium (15) (20) (21) (10)
(58% (77% [81% [38%

Both (42) (48) (51) (22)
(75% (86% (91% [39%

Testing Sample (40 Observations)

Highest (17) (18) (20) No
(85% [90% [100% Test

Medium (9) (14) (15) No
[45% [70% [75% Test

Both (26) (32) (35) No
[65% [80% (88% Test

Source: Surkan and Singleton (1990)
Note: Table entries give (number) and [percent correctly
classified

One discriminant analysis and one neural network model

were created for this study. SAS DISCRIM was the program used

for the discriminant analysis model. The neural network model

used backpropagation as the network architecture, with five

4. Market Value of Equity/Total Debt
5. Sales/Total Assets [Ref. 7 p. 11-164]
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input neurons, five hidden neurons in one hidden layer, and

one output neuron. To examine the robustness of both types of

models, three separate groups of training data were used on

both models. The first used all of the data available in the

training subset of 38 bankrupt and 36 nonbankrupt firms,

referred to as the 50/50 training set. The training data set

was then randomly adjusted to be more realistic of the real

world ratio of nonbankrupt firms to bankrupt firms. The

second subsample consisted of 36 nonbankrupt to nine bankrupt

firms, while the third subsample consisted of 36 nonbankrupt

to four bankrupt firms. These are referred to as the 80/20

and the 90/10 training sets. Essentially, one discriminant

analysis and one neural network model was created on each

training set of data, then tested on the holdout sample.

The results of the tests of the models on the holdout

sample are shown in Table 6. The neural network models

clearly outperformed the discriminant analysis model in the

task of bankruptcy prediction. The neural network model

predicted 81.48 percent of the bankrupt firms compared to

59.26 percent for the discriminant analysis model based on the

50/50 training sample, 77.78 percent to 70.37 percent based on

the 80/20 sample, and 77.78 percent to 59.26 percent based on

the 90/10 sample.

At the task of correctly predicting nonbankrupt firms, the

results were mixed. For the 50/50 training sample models the

discriminant analysis model correctly predicted 89.29 percent
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to the neural network model's correct rate of 82.14 percent.

The discriminant analysis model also outperformed the neural

network model based on the 80/20 sample by predicting 85.71

percent to 78.57 percent. However the neural network model

outperformed the discriminant model based on the 90/10

training sample by correctly predicting 85.71 percent compared

to 78.57 percent for the discriminant model.

TABLE 6: COMPARISON OF DISCRIMINANT ANALYSIS AND NEURAL
NETWORK MODELS ON THE HOLDOUT SAMPLE

Training sample Neural Discriminant
proportion Network Analysis

Bankruptcy Prediction (27 observations)

50/50 (22) (16)
[81.18% [59.26%

Medium (21) (19)
[77.78% (70.37%

Both (21) (16)
(77.78% (59.26%

Nonbanckruptcy prediction (28 observations)

50/50 (23) (25)
[82.14% (89.29%

80/20 (22) (24)
(78.57% (85.71%

90/10 (24) (22)
(85.71% [78.57%

Source: Odom and Sharda (1990)
Note: Table entries give (number) and [percent correctly
classified

The results of this study indicate that neural networks

have promise for prediction purposes in the area of bankruptcy

analysis. The neural networks significantly outperformed the

48



discriminant analysis model for bankruptcy prediction, and

performed better at nonbankruptcy prediction as the ratio of

bankrupt to nonbankrupt firms declined in the training sample.

However, discriminant analysis has several shortcomings which

could lead to neural networks appearing favorably in this

comparison. Afifi and Clark (Ref. 12] list the following as

possible trouble areas for discriminant analysis:

1. A simple random sample from each population is assumed.
As this is often not feasible, the sample taken should be
examined for possible bias errors.

2. If some of the variables are dichotomous and one of the
outcomes rarely occurs, then logistic regression analysis
should be considered as a modeling technique rather than
discriminant analysis.

Possible ways to improve this study would be to use more

than the five ratios as inputs to the models, and to use

multiple hidden layered neural networks with various numbers

of neurons in those hidden layers.

Yoom and Swales [Ref. 13] compared the predictive power of

a neural network model with that of a multiple discriminant

analysis model at the task of predicting stock price

performance. Both qualitative and quantitative variables help

form the basis of investor stock price expectations and

influence investment decision making. These variables also

form the basis of stock price fluctuation; if investors

believe that a company has the potential for strong growth,

demand for the stock will rise as will the price. Conversely,

if investors feel that a company is weak financially, demand
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for its stock will decrease and drive down the price. Thus a

model predicting stock price performance should contain those

variables, both quantitative and qualitative, that influence

investor decision-making.

Yoom and Swales reviewed previous studies in which

multiple discriminant analysis models were used to predict

stock price performance. These studies utilized quantitative

financial variables to construct their models, which have

reasonably good predictive results. These models provide the

basis for Yoom and Swales' models. In addition, they use

qualitative variables gleaned from companies' annual reports.

Content analysis was done on the presidents' letters to

shareholders of the companies included in this study. The

most important recurring themes of these reports are analyzed

for frequency and percentage of the report, and used as inputs

to both the multiple discriminant analysis and the neural

network models.

The data for this study are taken from the Fortune 500 and

Business Week's "Top 1000." These sources provide the

quantitative variables used by investors, while the

president's letters to investors are used to determine which

qualities are important to the individual companies.

The Fortune 500 sample includes observations on the 58

firms from the five industries that offer investors the

highest total return in the year of the report. The Business

Week sample includes observations from the 40 firms in the 10
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industries that are reported to have offered the highest total

return to investors. Both samples were subdivided into two

groups; group one consisted of those firms with the highest

market valuations for their industry, while group two consists

of those firms with the lowest market valuations. A multiple

discriminant analysis model was then constructed, including

both the quantitative and qualitative variables previously

discussed, and the model was derived from the Fortune 500

sample. The output parameters for the model are whether the

firm is a well-performing or a poor-performing firm.

A neural network model was also created using the data

form the Fortune 500 sample. The model used backpropagation

as the network architecture, with two hidden layers containing

four neurons in the first and one neuron in the second hidden

layer. The network used one output neuron. Both the neural

network and the multiple discriminant analysis models were

then tested on the Business Week sample.

The results of both the tests on the training data and the

testing data are shown in Table 7. On the training set data

(Fortune 500 sample) the multiple discriminant analysis model

correctly classified 21 of 29 companies into group one, and 22

of 29 companies into group two. On the testing set (Business

Week sample) the multiple discriminant model correctly

classified 14 of 20 into group one, and 12 of 20 into group

two.
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The neural network model performs significantly better

than the multiple discriminant analysis model. The neural

network model correctly classified 25 of 29 firms into group

one and 28 of 29 firms into group two on the training data.

For the testing data set the model correctly classified 18 of

20 companies into group one and 13 of 20 companies into group

two.

TABLE 7: PERFORMANCE OF THE MULTIPLE DISCRIMINANT
ANALYSIS MODEL AND THE NEURAL NETWORK MODEL ON THE

TRAINING AND TESTING DATA

Group Neural Discriminant
Network Analysis

Training Data (58 observations)

Group 1 (25) (21)
[86% [72%

Group 2 (29) (22)
[96% [76%

Mean (91% [74%

Testing Data (40 observations)

Group 1 (18) (14)
[90% [70%

Group 2 (13) (12)
[65% [60%

Mean [77.5% (65%
Source: Yoom and Swales (1990)
Note: Table entries give (number) and [percent correctly
classified

D. NEURAL NETWORKS FOR TIME SERIES FORECASTING

Hill, O'Conner, and Remus [Ref. 14] evaluated neural

network models for time series forecasting. They compared

neural network models with three classes of traditional time
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series forecasting models: statistical methods, human

judgement methods, and naive-forecasting methods. Hill et al.

compared neural networks with models from each class of

traditional model in side-by-side experiments over the same

data sets. The comparisons were done on monthly, quarterly

and yearly time series data.

The data for the comparisons came from the "M-

competition," described by Hill et al. as 1001 real time

series gathered by Makridakis. These time series were

gathered for a competition in which various groups of

forecasters were given all but the most recent data points in

a systematic sample of 111 of the series. The forecasters,

all experts in their area of forecasting, were then asked to

make time series forecasts for the most recent points in the

ill series. Each competitor's forecasts were then compared to

the actual values in the holdout samples.

In the original "M-competition' 24 different forecasting

methods were used. Hill et al. chose six methods which

performed relatively well in the competition, out of the set

of 24 from which to compare neural network models. From the

statistical method category three models were chosen: the

deseasonalized simple exponential smoothing, the Box-Jenkins,

and the deseasonalized Holt exponential smoothing method.

From the human judgement-based methods the authors chose
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graphical forecasts and a combination model.3 The authors

also included a naive forecasting model in which next period's

forecast is whatever happened in the prior period.

Two neural network models were formulated. The first (NN-

I) forecast all periods in the forecast horizon

simultaneously. The second neural network model (NN-2)

forecast for the first period of the forecast horizon, then

fed that forecast back into the network as input to forecast

into the second period of the forecast horizon, and so on.

The authors used the first two time series from each of the

three categories (monthly, quarterly, and annually) of time

series data sets to develop the structure of the two neural

network models. These series were omitted from the analysis,

leaving 105 series in total (18 annual, 21 quarterly and 66

monthly). Upon further investigation, one monthly series

(series 106) was found to have three major discontinuities,

and was eliminated from the monthly database. F o rec as t

accuracy was compared on the basis of absolute percentage

forecast error (APE).4 Because the forecasts were not

3 This model is the average of the forecasts of six statistical
methods (deseasonalized single exponential smoothing,
deseasonalized adaptive response rate exponential smoothing,
deseasonalized Holt's exponential smoothing, deseasonalized Brown's
linear exponential smoothing, Holt-Winter's linear and exponential
smoothing, and Carboni-Longini filter method).

4 APE = (11N) (Sum: E/ýI) *100
where: N =Number of residuals

S= Actual value of forecast
E= Predicted value of forecast t-
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statistically independent nor necessarily normally

distributed, the APE's of the neural network models were

compared with the traditional model forecasts using the paired

t-test.

The second type of neural network model (NN-II) was found

to provide a higher accuracy than the first type (NN-I).

Given the overall superiority of NN-II, the authors focused on

it when comparing the neural network model with the

traditional models. Table 8 presents the mean absolute

percentage errors (APE's) and their standard deviations for

both the neural network models and the traditional models for

the annual, quarterly, and monthly restricted data sets.

Table 8 shows mixed performance results for the neural

network model on the annual time series compared to the

traditional models. The neural network model performed

significantly better than the deseasonalized exponential

smoothing and the naive models, but significantly worse than

the human judgement models using the graphical method and the

six methods combined.

On the quarterly and monthly time series data the neural

network model performed significantly better than the

traditional forecasting methods. In only one case

(deseasonalized exponential smoothing over the monthly time

series) did the neural network not clearly outperform the
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traditional models, and in that case the neural network model

performed at least as well as the traditional model.

TABLE 8: COMPARISON OF A NEURAL NETWORK MODEL WITH
TRADITIONAL MODELS FOR TIME SERIES FORECASTING

Network Annual Quarterly Monthly
Restricted

NN-2 14.2 15.3 13.6
(17.1) (17.1) (14.3)

Deseasonalized 15.9 18.7 15.2
Exponential (17.0) (27.0) (33.1)
Smoothing ** **

Box-Jenkins 15.7 20.6 16.4
(22.8) (40.8) (26.9)

Deseasonalized 12.1 26.9 19.2
Holt's (16.0) (50.2) (47.5)

Graphical 12.5 20.5 16.3
Human Judgment (12.5) (34.5) (22.8)

** ** *

Six Methods 12.6 21.2 16.7
Combined (16.1) (38.3) (41.0)

* ** *

Naive 16.4 20.0 27.0
(16.7) (27.8) (40.4)

Source: Hill et al. (1990)
Note: Table entries giva Mean (and Standard Deviations) of
APE's for each method across each series grouping

Results of comparison paired t-tests with NN-II are shown
for * for .05, ** for .01, and *** for .001 levels.

The authors of the study conclude that neuril networks as

predictors for time series forecasting show great promise.

However, they caution that finding the best neural network

structure to learn the underlying functional form of the data

set is a formidable task
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Wiggins and Engquist (Ref. 9] examined the use of neural

network as modeling tools for the Air Force personnel system.

On an aggregate level the Air Force personnel system has three

major flow rates: non-prior service accessions (NPS), prior

service accessions (PS), and separations. Currently only

voluntary separations are modeled using the reenlistment rates

for first term (RELRT1) and second term (RELRT2) airmen.

Wiggins and Engquist compare the predictive power of three

neural network models with those of two more traditional

modeling techniques for predicting Air Force personnel flows.

Traditionally Air Force personnel flows have been modeled

using ordinary least squares (OLS) to separately estimate each

flow rate equation and generalized least squares (GLS) to

simultaneously estimate the four (NPS, PS, RELRT1, and RELRT2)

flows. Wiggins and Engquist estimate the equations using data

over one time period, October 1979 through September 1987, and

validated their performance over the time period October 1987

through September 1988.

Wiggins and Engquist created three neural network models,

using stopping criteria similar to those used in their

individual reenlistment model, described earlier in this

chapter. The BP Hold method stopped training when performance

was best on the actual validation sample. The BP Temporal

method terminated training when performance was best on a

temporal hold out sample. The third training heuristic

stopped training when the second derivative of the in-sample
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RMSE with respect to the amount of training, switched from

negative to positive for the second time. This network was

designated the BP Inflection network.

A comparison of the performance of the three neural

network models and the two regression techniques, on the

validation sample, is shown in Table 9. The R2 value for

comparison is the same comparison statistic described earlier

in the chapter for the Wiggins and Engquist article.

The authors noted that in nearly all cases the neural

network models clearly outperformed the traditional regression

models. In several cases the neural network models explained

more than twice the out-of-sample variations when compared to

the OLS or GLS models.

TABLE 9: VALIDATION SAMPLE RESULTS

Modeling Simulation R2
Technique NPS PS RELRT1 RELRT2

OLS .618 .378 .288 .569

GLS .606 .317 .237 .323

BP Temporal .487 .633 .683 .736

BP Hold .647 .633 .774 .736

BP Inflection .644 .550 .772 .436
Source: Wiggins and Engquist (1993)

E. CONCLUSION

The articles reviewed in this chapter show that neural

networks hold promise as alternatives to more traditional
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forms of modeling. The remainder of this thesis is an

exploration of the use of neural networks to a problem

specific to military manpower analysis, namely, that of

predicting reenlistment.
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IV. DATA AND METHODOLOGY

A. INTRODUCTION

Determining the efficacy of neural network models for

military manpower and personnel analysis, requires tests that

compare the results and outcomes of both neural networks and

traditional data analysis techniques using the same data.

Traditional data analysis techniques based on accepted

econometric principles should be used for a baseline model,

against which neural network models can be compared. This

type of comparison is essential to assess how neural network

models can perform as tools for the military manpower and

personnel analyst.

Features of the assessment of a neural network model for

this thesis follow:

1. Acquire a large manpower data set for which a standard
regression model has been developed.

2. Randomly subset the data into a training data set and a
testing data set.

3. Use the training data set to estimate a traditional data
analysis model, based on accepted econometric techniques.

4. Develop two neural network models using NeuralWare
software: (i). Neural network model one using the training
data set with the same variables used to develop the
traditional data analysis model. (ii). Neural network model
two using the training data set with an expanded number of
variables.
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5. Apply both the neural network models and the traditional
data analysis model to the testing data set, to test the
predictive power of the models.

6. Evaluate the results of the tests, compare the outputs of
the models, and make recommendations based on those
comparisons. The criterion used for comparisons of the
models is the number correctly predicted on the testing data
set.

The remainder of this chapter describes the data set used

for this thesis, the variables selected to build the models,

and the methodology used to develop both the traditional data

analysis model and the neural network models.

B. DATA

The data used for this thesis were extracted primarily

from the 1985 DoD Survey of officer and Enlisted Personnel

(Ref. 15). The 1985 survey has been matched by social

security number with personnel records to obtain information

on respondents' military status in 1989.

The 1985 survey was conducted by the Defense Manpower Data

Center (DMDC) to provide information for the services to help

improve force readiness and retention. The survey was

conducted in response to a mandate by the Deputy Secretary of

Defense for Force Management and Personnel, with an emphasis

placed on military families, who were recognized as extremely

important to the retention and readiness of the services.

Table 10 describes the nine sections of the survey. The

population from which the survey was drawn consisted of active

duty officers and enlisted members worldwide who were on
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active duty as of 30 September 1984. Members considered new

accessions, those with less than four months active duty

service, were excluded from the population. The survey was

administered to approximately 132,000 active duty military

members, providing a large cross-sectional sample of the U.S.

military.

TABLE 10: THE 1985 DOD SURVEY OF OFFICERS AND ENLISTED
PERSONNEL TOPIC AREAS

Section Questionnaire Topic Area

1 Military Information--Service, Paygrade,
military occupation, term of enlistment

2 Present and Past Locations--length of stay,
expected stay, and problems encountered at
present and past duty stations

3 Reenlistment/Career Intent--expected years of
service, expected rank when leaving the service,
and probable reenlistment behavior

4 Individual and Family Characteristics--basic
demographics such as age, sex, and marital
status

5 Dependents--basic demographics from Section 4,
and whether or not dependents were handicapped

6 Military Compensation. Benefits, and Programs--
benefits received for military service, and
a ailability and satisfaction with family
programs

7 Civilian Labor Force Experience--members'
civilian work experience and previous earnings

8 Family Resources--household's civilian work
experience and earnings, and non-wage or salary
sources of earnings

9 Military Life--satisfaction with various aspects
of military life, including pay and allowances,
interpersonal environment, and benefits

Source: 1985 DoD Survey of Officers and Enlisted Personnel
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This thesis compares neural network models and a more

traditional model in analyzing the re-enlistment decisions of

a relatively homogeneous group of service members. The sample

chosen for this comparison includes male, Navy enlisted

personnel, with 24 to 72 months of active duty service. To

ensure that all members of the data set were afforded an

opportunity to make a re-enlistment decision prior to the 1989

status variable being matched with the survey data, only those

members who were within three years of their end of obligated

service were included. To avoid the effects of atypical

enlisted personnel, the sample was further constrained to

personnel in the paygrades E-3 to E-6, who were 30 years of

age or younger when they first enlisted in the military.

Finally, those observations which contained missing or

unrealistic values were also omitted from the sample data set.

The sample size was 680 observations.

C. VARIABLE DEFINITIONS

Variables expected to affect the reenlistment decision

were chosen based upon a logistic regression model developed

and estimated by Kathy Kocher and George Thomas at the U.S.

Navy Postgraduate School, Monterey, California. The following

variables will be used to develop the traditional data

analysis model and neural network model one. The variables

which will be used to develop neural network model two will

consist of all the following variables, and the variables
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discussed in section D of this chapter, and described in Table

12.

1. Dependent Variable (STATUS)

The dependent variable STATUS is a dichotomous

variable measuring the actual reenlistment behavior of the

sample members. The variable is equal to one if the

individual remained on active duty three years after the

survey, and equal to zero if he separated by that time.

2. Independent Variables

The independent variables chosen for this analysis

fall into one of five general categories: Demographics,

Military characteristics, Educational level, Level of

perceived employability and Satisfaction with Military Life

and Military Benefits.

a. Demographic Variables

(1) Age Upon Entering Active Duty Status ENTRYAGE

is the member's age when he entered active duty in the Navy.

ENTRYAGE is computed by subtracting the amount of time the

member has served on active duty from his reported age at the

time of the survey. As a member's age at entering active duty

goes up, the time remaining in his work career decreases,

giving him less time to establish a second career. Therefore,

ENTRYAGE is hypothesized to have a positive effect on the

probability of reenlistment.
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(2) Race Race is measured using the three dummy

variables, WHITEOTH, BLACK, and HISPANIC. A dummy variable is

coded as a one if the member falls into that category, and as

a zero if he does not fall into that category. Past studies

have shown that minorities reenlist at a higher rate than

caucasians, possible due to perceived lower employment

opportunities for minorities in the civilian labor market.

Minorities other than people of African American or Hispanic

descent are categorized with caucasians in the category

WHITEOTH to keep the number of categories low and ease the

modeling problem.

(3) Family and Marital Status Family and Marital

Status is categorized by the four dummy variables Single No

Children (SNC), Single With Children (SWC), Married No

Children (MNC), and Married With Children (MWC). The category

into which the member fell was coded as a one, while those

categories in which he did not fall were as a coded zero. As

a member takes on more responsibility and dependents, his

ability to change careers decreases. This leads to the

hypothesis that the categories SWC, MNC, and MWC will have a

positive effect on the probability of reenlistment, compared

to the base category of SNC.
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b. Military Characteristics

(1) Rank A member's rank is measured using three

dummy variables: E3, E4, and E5/6. The E5 and E6 paygrades

are combined because members in those ranks are normally

beyond their first enlistment and will exhibit many of the

same reenlistment behaviors. Increased rank leads to

increased pay and benefits, decreasing the incentive to leave

the military for higher paying civilian opportunities. Rank

is then hypothesized to have a positive effect on the

probability of reenlistment.

(2) Military Occupation A member's military

occupation is recoded into the dummy variable, Technical

Occupation (TECOCC). If a member's military occupation fell

into the electronic equipment repair, the communications and

intelligence, the medical and dental, or other technical

fields, then TECOCC was coded as a one. If the member's

military occupation fell into direct combat, support and

administrative, electrical/mechanical equipment repair,

crafts, service and supply, or a non-occupational field, then

TECOCC was coded as a zero. Those members with a technical

occupation have skills that are valuable in the civilian work

force, and therefore, a member who falls into the TECOCC

category should have a decreased probability of reenlistment,

compared with a member who does not have a technical

occupation.
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c. Education Level

A member's educational level was recoded into the

dummy variables of having a high school degree (HSDEG) or

having some type of high school certificate (HSCERT). If a

member graduated and received a high school diploma then he

fell into the category of having a high school degree and

HSDEG was coded a one and HSCERT was coded a zero. If a

member received a GED certificate, a high school

completion/attendance certificate, or a home study diploma,

then he fell into the category of having a high school

certificate and HSCERT was coded a one and HSDEG was coded a

zero. Those members who had no certificate or diploma were

dropped from the data set. Those members who do not have a

high school diploma should have reduced chances for a

perceived "good" job in the civilian labor market. Therefore,

not having a high school diploma should increase the

probability of reenlistment.

d. Level of Perceived Employability

A major factor in whether a member decides to

reenlist or not is his perceived chances of finding a good

civilian job. In the original DoD Survey, a member was asked

to rate, on a scale of one to ten, what he felt his chances

were of being able to get a good civilian job if he left the

military at the time of the survey. This response was recoded

to a dummy variable CIVJOB, receiving a one if the member
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responded to the original question with an answer of seven or

higher, and a zero if he felt his chances of getting a good

civilian job were six or less.

e. Satisfaction with Military Lifestyle and Military

Benefits

A major portion of the 1985 DoD Survey deals with

the member's satisfaction with military life and benefits of

being in the military. However, correlation analysis shows

that those satisfaction variables that have high predictive

power for the reenlistment decision also are highly correlated

with each other. Although multicollinearity will have little

effect on the overall fit of a model, and thus little effect

on the use of that model for prediction or forecasting, the

variances of the variables will increase and the computed t-

scores will fall. This rise in variances and fall in t-scores

will reduce the explanatory power of the traditional data

analysis model.

One solution to the problem of multicollinearity

between independent variables is factor analysis. Factor

analysis will yield explanatory variables which are

uncorrelated and thus do not reduce the explanatory power of

the traditional model. For this reason, factor analysis was

undertaken using the satisfaction variables to compute two new

variables, FACTOR1 and FACTOR2. Table 11 shows the rotated

factor pattern scores for the satisfaction variables included
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in the analysis. As satisfaction with the military lifestyle

and military benefits increase, the probability of

reenlistment should also increase, all other variables held

constant. An increase in a satisfaction variable will have a

positive increase in either FACTOR1 or FACTOR2, which will

lead to an increase in the probability of reenlistment.

(1) FACTOR1 FACTOR1 loads heavily on the

satisfaction with military lifestyle variables. Those

variables include: job satisfaction, satisfaction with

working conditions, satisfaction with job training,

satisfaction with job stability, satisfaction with a member's

co-workers, satisfaction with job security, satisfaction with

personal freedom, satisfaction with promotion opportunity,

satisfaction with the opportunity to serve his country,

satisfaction with personal friendships, and satisfaction with

military moves and moving frequency.

(2) FACTOR2 FACTOR2 is loaded heavily on the

satisfaction with military benefits variables. Those

variables include: satisfaction with medical care,

satisfaction with dental care, satisfaction with commissary

services, satisfaction with future retirement benefits,

satisfaction with military pay, and satisfaction with Veterans

Educational Assistance Program (VEAP) benefits. Satisfaction

with the military family environment loads heavily on FACTOR2.
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Satisfaction with military pay loads more heavily on FACTOR2

than on FACTOR1 but the loading is relatively close.

TABLE 11: ROTATED FACTOR PATTERN SCORES

Sati.;faction Variables FACTOR1 FACTOR2

Overall Job 0.71266

Work Conditions 0.62253

Job Training 0.55176

Job Stability 0.54597

Co-Workers 0.51141

Job Security 0.49178

Promotions 0.47001

Personal Freedom 0.46376

Ability to Serve Country 0.42604

Family Environment 0.41481 0.37981

Friendships 0.36824

Moving 0.35458

Medical Care 0.76467

Dental Care . 0.69765

Commissary Services 0.50460

Retirement Benefits . 0.43947

Pay 0.38413 0.43609

VEAP Benefits . 0.41571
Note: Values less than 0.3 have been printed as '.'

D. METHODOLOGY

1. Traditional Data Analysis Model

Multivariate data analysis is used to quantify the

relationship between the dependent variable STATUS, and the

independent or explanatory variables discussed earlier in this
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chapter. The estimation technique used here is binomial

logistic regression, suitable for the analysis of a

dichotomous dependent variable such as STATUS.

The model is based on the cumulative logistic

distribution function, and has the following functional form:

Ln (Pi/ l-P) = fo+O1X1i+0 2X2i+-.. +ODXm+Ei

The estimated value Pi is interpreted as the

probability that member i will reenlist for active duty, given

his set of explanatory variables (X,,X 2,...,X 3 ). The ,1's

represent the estimated coefficients associated with the

respective Xe's. 00 is the constant term, and e is the

stochastic error term.

2. Neural Network Models

The neural network models will be constructed using

NeuralWare, a commercially available brand of neural network

software. It was chosen for use in thl3 thesis because it was

readily available at the Naval PostGraduate School.

Construction of a neural network model is often

considered an art rather than a hard science. For this

rea,•on, the methodology of creating a iheural network model may

seem rather haphazard. Poth neural network models will be

constructed using the backpropdgation learning algorithr with

the generalized delta rule. The Tan H transfer function wi:I
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be used as the initial transfer function because the networks

are concerned with prediction as their basic feature. Neural

network model one will be created with the same set of

variables used in the logistic regression model. Initially

neural network model one will be constructed using

NeuralWare's default settings for learning rate (alpha) and

momentum. The neural network model one will initially be

constructed with a single hidden layer containing five

neurons, and will be trained for 500,000 learning cases.

Epoch size, or the number of training cases the network looks

at before it updates itself, will be changed from the default

setting of 16 to a factor of the data set size, 68. Learning

transition point, the point at which the network begins to

decrease the learning rate to prevent oscillations in the

network as it attempts to move down the error structure, will

be moved from 10,000 to 50,000 iterations to allow the network

more time to train at each training rate. NeuralWare

recommends that the learning transition be increased as the

size of the data set increases.

Subsequent variations of neural network model one will

be constructed using varying numbers of neurons in up to two

hidden layers. The model chosen as the final neural network

model one will be the model that has the best predictive

ability on the holdout testing data set.

In order to test the ability of a neural network to

model a problem that a researcher is unfamiliar with or that
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has no apparent underlying theoretical model, a second neural

network model will be constructed and compared to neural

network model one. Neural network model two will be

constructed using an extended data set that includes all of

the theoretically sound variables used to develop neural

network model one, plus the variables shown in Table 12. Some

of the variables shown in Table 12 are theoretically sound for

predicting reenlistment, while others such as MILHOUR are

merely noise that the neural network should be able to ignore.

Neural network model two will be constructed using the same

architecture as neural network model one, and the emphasis of

the comparison will be whether or not the two neural network

models have comparable partial effects of explanatory

variables on reenlistment.

In summary, this thesis will make two comparisons.

First, it will compare the results of a neural network model

(neural network model one) to a traditional econometric data

analysis method (logistic regression) for predicting

reenlistment in the Navy. These two models will be

constructed using the same data set and the same set of

variables. A second neural network model will also be

developed (neural network model two), but using an extended

set of variables on the same data set as the first two models.

A comparison will then be made between the two neural network

models to determine if there are significant differences
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between the two neural network models. The following chapter

describes the logistic regression model and its results.

TABLE 12: EXTENDED DATA SET VARIABLES FOR THE
CONSTRUCTION OF NEURAL NETWORK MODEL TWO

Variable Description of the Variable

SPACTIVE A dummy variable coded "i" if the member had a
spouse on active duty in the military, and "0"
otherwise

SEATIME Months of career sea time

OSEATIME Months of career oversea's time

INCOME Total family income

PCSMOVE Number of permanent change of station moves a
member had made during his career

MOMSED Total years of a members mothers education

OFDTYJOB Number of weekly hours spent on an off duty job

CIVJOBOF A dummy variable coded "i" if a member had ever
received a "good" civilian job offer, and "0"
otherwise

MILMOUR Military hour that the member was surveyed

NUMENLST Number of enlistment when the member was
surveyed

DEBT A categorical variable, between one and seven,
of a members total household debt

Source: 1985 DoD Survey of Officers and Enlisted Personnel
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V. RESULTS OF THE LOGISTIC REGRESSION MODEL

A. DESCRIPTIVE STATISTICS

Table 13 displays the means, standard deviations, and

ranges for the variables included in the final logit model.

The mean values of the categorical variables can be

interpreted as the percentage of the data set that hold that

characteristic. For example, 12.21 percent of the data set is

of African-American descent, and fall into the category BLACK.

Of those members in the sample, 31.18 percent hold a technical

occupation. Rank is divided into 20.73 percent E3, 38.68

percent E4, and 40.59 percent E5/6.

B. RESULTS OF THE LOGISTIC MODEL

The generally accepted criteria for assessing the overall

fit of a logistic model is the -2 Log Likelihood statistic (-2

Log L). The -2 Log L has a chi-square distribution under the

null hypothesis that all the explanatory variable parameters

in the model are zero. The -2 Log L for the reenlistment

model is computed to be 83.709 with 13 degrees of freedom.

Using the chi-square distribution, the probability that the

null hypothesis is true for the reenlistment model is less

than .0001 (p=.0001).

75



TABLE 13: SIMPLE STATISTICS FOR EXPLANATORY VARIABLES IN
THE LOGISTIC MODEL

Variable Mean Standard Minimum Maximum
Deviation

CIVJOB 0.8118 0.3912 0 1

ENTRYAGE 19.2558 2.1955 16.00 29.83

E4 0.3868 0.4874 0 1

E56 0.4059 0.4914 0 1

BLACK 0.1221 0.3276 0 1

HISP 0.0824 0.2751 0 1

SWC 0.0176 0.1318 0 1

MNC 0.1765 0.3815 0 1

MWC 0.2000 0.4003 0 1

TECOCC 0.3118 0.4636 0 1

HSCERT 0.1618 0.3685 0 1

FACTOR1 0.0097 0.8827 -2.5631 2.0796

FACTOR2 0.0091 0.8632 -2.8052 2.4067

The results of the logit analysis of the reenlistment

model are shown in Table 14. The probability of a member

reenlisting in the navy is derived from the equation

P = 1 / (l+ez) , where

Z = -2.15 + -. 659(CIVJOB) + .045(ENTRYAGE) + .654(E4)

+ 1.003 (E56) + .699(BLACK) - .091(HISP) + .247(SWC) +

.820(MNC) + .836(MWC) + .241(TECOCC) + .240(HSCERT) +

.321(FACTOR1) + .181(FACTOR2).
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TABLE 14: RESULTS OF THE LOGISTIC REGRESSION
REENLISTMENT MODEL

Variable Parameter Standard Wald Pr >
Estimate Error Chi-Square Chi-Square

INTERCEPT -2.1550 0.7747 7.7016 0.0055

CIVJOB -0.6590 0.2141 9.4738 0.0021

ENTRYAGE 0.0450 0.0383 1.3829 0.2396

E4 0.6535 0.2560 6.5178 0.0107

E56 1.0031 0.2614 14.7201 0.0001

BLACK 0.6995 0.2626 7.0939 0.0077

HISP -0.0909 0.3185 0.0814 0.7754

SWC 0.2468 0.6415 0.1481 0.7004

MNC 0.8204 0.2276 12.9896 0.0003

MWC 0.8361 0.2201 14.4307 0.0001

TECOCC 0.2409 0.1868 1.6622 0.1973

HSCERT 0.2402 0.2310 1.0818 0.2983

FACTOR1 0.3209 0.1025 9.7968 0.0017

FACTOR2 0.1812 0.1053 2.9654 0.0851

C. INTERPRETING THE RESULTS OF THE REENLISTMENT MODEL

Logistic regression model results cannot be interprzted

directly from the variable parameters, because of the

functional form of the model. One way to interpret the

results of a logistic regression model is to establish a base

case. This base case represents the reference group of

variables against which comparisons can be made of the impact

of individual explanatory variables on retention, holding all

other variables constant.
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In this instance the base case is derived from the

estimated logit equation using the modal values for the

categorical variables and mean values for the continuous

variables. The equation for the base case, using the modeled

results from Table 14 follows:

Z = -2.15 + -. 659(CIVJOB=l) + .045(ENTRYAGE=19.256) +

.654(E4=0) + 1.003 (E56=0) + .699(BLACK=0) - .091(HISP=0) +

.247(SWC=0) + .820(MNC=O) + .836(MWC=0) + .241(TECOCC=O) +

.240(HSCERT=O) + .321(FACTOR1=0.0097) + .181(FACTOR2=0.0091)

Z = -1.9377

P = 1 / (1+ez),

P = 0.1259

Therefore, the base case individual, a white, male E-3,

single with no dependents who joined the service at age 19.25

with a high school diploma, who feels that he has a strong

chance of getting a good civilian job if he leaves the

military, and whose satisfaction variables give him average

factor scores, will have a 12.59 percent probability of

reenlisting in the Navy.

The remainder of this section is an analysis of the

effects of each independent, explanatory variable on the

reenlistment decision, compared to the base case set of

variables.
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1. Demographic Variables

a. Age Upon Entering Active Duty Service

ENTRYAGE is found to have the correct hypothesized

sign, that is, the older a member was when he first entered

active duty status, the more likely he was to reenlist in the

Navy when his commitment was over. However, ENTRYAGE is

significant only at the .25 level, making it a variable that

has little reliability as an explanatory variable. The effect

of a one year increase in ENTRYAGE from the base case results

in a 0.5 percent increase in the probability of reenlistment.

b. Race

Being an African-American minority has the correct

hypothesized sign compared to the WHITEOTH base case. The

effect of BLACK is both positive and significant at the 0.01

level. The effect of being African-American as opposed to

falling in the WHITEOTH category for the base case individual

is a 9.9 percent increase in the probability of reenlistment.

HISP has the incorrect sign as hypothesized, but is

not a significant variable. Additionally, the coefficient for

HISP is small compared to BLACK. The effect of being a

Hispanic minority rather than WHITEOTH for the base case

individual is a decrease in probability of reenlistment of

0.97 percent.
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c. Family and Marital Status

The effects of being either married, having

dependents, or both all have the correct sign as hypothesized

compared to the base case, single with no children (SNC)

individual. Although SWC is not significant, MNC and MWC are

significant at the 0.01 level. The effect of SWC compared

with the base case is an increase of 3.0 percent in the

probability of reenlistment. The effect of MNC and MWC are

respective increases in the probability of reenlistment of

12.1 and 12.4 percent.

2. Military Characteristics

a. Rank

A member's rank when surveyed is found to have the

correct hypothesized sign. The more senior a member was, the

higher the probability he would have of reenlistment. Both E4

and E56 were found to be significant, E4 at the 0.05 level and

E56 at the 0.01 level. The effect of being an E-4 rather than

an E-3 for the base case individual is a 9.1 percent increase

in the probability of reenlistment. Being an E-5 or an E-6

increased the probability of reenlistment by 15.6 percent.

b. Military Occupation

TECOCC has the incorrect hypothesized sign, but is

not a significant explanatory variable up to the .19 level.

The effect of having a technical occupation in comparison to

the base case individual who does not have a technical
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occupation, is an increase of 2.9 percent in the probability

of reenlistment.

3. Education Level

A member's education level was found to have the

correct hypothesized sign, but is not significant at the 0.10

level. A member who had less than a high school diploma would

have a higher probability of reenlisting than a member who had

a high school diploma. The effect of a member not having a

high school diploma in comparison to the base case individual

increases the probability of reenlistment by 2.9 percent.

4. Level of Perceived Employability

CIVJOB has both the correct hypothesized sign and is

significant at the 0.01 level. The effect of a member feeling

that he has less than a good chance at getting a good civilian

job if he left the military is an increase in the probability

of reenlistment of 9.2 percent. This is compared with the

base case individual, who feels that he has a good chance of

getting a civilian job if he left the military.

5. Satisfaction with Military Lifestyle and Military

Benefits

Both FACTOR1 and FACTOR2 have the correct hypothesized

sign and are significant at the 0.01 and 0.10 levels

respectively. An analysis in the change from the base case

individual is inappropriate for these variables because the

base case individual was assumed to have average FACTOR1 and
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FACTOR2 scores, which could have occurred in many ways, due to

the weighting of the factor analysis. However, it will

suffice to say that a one unit increase in FACTOR1 from 0.0097

to 1.0097 will increase the probability of reenlistment by 4.0

percent, while a one unit increase in FACTOR2 from 0.0091 to

1.0091 will increase the probability of reenlistment by 2.1

percent.

D. VALIDATION OF THE LOGISTIC REGRESSION MODEL

One way to validate a prediction model is to observe how

the model predicts on a data set not used in building the

model. In this thesis, a random subset of 100 observations

was taken from the original data set prior to constructing the

logistic regression model.

A 0.5 probability cutoff was used to determine the number

of correct predictions for the testing data set. That is, if

the model predicted a probability of below 0.5 and the actual

decision was not to reenlist, then the model was assumed to

make a correct prediction. Conversely if the model predicted

a probability of less than 0.5 and the member actually

reenlisted, then the model made an incorrect prediction. The

same logic was used for predictions above 0.5.

Overall, the model predicted 71 out of 100 (71 percent)

reenlistment decisions for the testing data set. It predicted

13 out of 22 (59.1 percent) of those members who reenlisted,

and 58 out of 78 (75.6 percent)of those members who decided
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against reenlistment. The model had a false positive rate

(those members who the model predicted would reenlist, but did

not) of 40.9 percent, and a false negative rate (those members

the model predicted would not reenlist, but who did so) of

24.6 percent.
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VI. RESULTS OF THE NEURAL NETWORK MODELS

A. NEURAL NETWORK MODEL ONE DESCRIPTION

Twenty different architectures were created for neural

network model one using the methodology described in Chapter

IV. The models were created using various combinations of

number of neurons and number of hidden layers (one or two).

The initial neural network model contained five neurons in a

single hidden layer, and subsequent modifications of this

architecture included hidden layers with as few as one, and as

many as 100 neurons in a single hidden layer. Several

networks were also constructed using two hidden layers, with

various combinations of number of neurons in each layer.

Initially all networks used the default settings in NeuralWare

for learning rate (alpha) and momentum, but these were also

varied for each network architecture. Initially all

architectures used the Tan H transfer function, but were

modified to use the sigmoidal transfer function also.

All of the different neural network architectures

constructed for neural network model one contained the same

variables used to construct the logistic regression model.

They contained 17 input neurons, one for each explanatory

variable included in the model. Because the output variable

STATUS was a dichotomous variable, taking on a output value of
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either one or zero, only one output neuron was used to model

the reenlistment decision. All of the various model

architectures were tested on the testing data set to determine

which architecture was the best at predicting reenlistment.

The best model architecture at predicting reenl 4 stment was

constructed with a single hidden layer, consisting of two

neurons in the hidden layer. It used the default settings in

NeuralWare for learning rate and momentum, and used the Tan H

transfer function. For the remainder of this thezis this

architecture will be referred to as neural network model one.

Figure 14 is a pictorial depiction neural network model one.

Neural Network Reenlistment Model One

REEN•I TMENT

HIDDENI HIDDEN2

CMOs E3 E BLACK SIC MNC TECOCC HSCERT FACTOR2

ENTRYAGE E4 WHITE HISP SWC MWC HWEG FACTORI

Figure 14
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B. DESCRIPTIVE STATISTICS

NeuralWare provides no descriptive statistics such as mean

and standard deviation of individual variables like those

produced by SAS for its logistic regression package. However,

a researcher can determine the range of the variables in a

neural network model by entering the MinMax window in

NeuralWare, where the minimum and maximum values of each

variable are presented.

C. RESULTS OF THE NEURAL NETWORK MODEL ONE

NeuralWare provides no overall goodness-of-fit statistic

for its model, such as the -2 Log Likelihood statistic

(described in Chapter V) provided by SAS in its logistic

regression output. NeuralWare also does not provide estimates

of the individual variable coefficients, like the O's provided

by SAS in its logistic regression package. This occurs

because the nature of neural computing is a multi-step

process. Inputs, in the form of explanatory variables, are

submitted to the input layer of neurons. In the input layer

a scaling transformation takes place so that all of the inputs

have the same scale. In NeuralWare, when using the Tan H

transfer function for all of the neurons in layers beyond the

input layer, the transformation is linear, and the inputs take

on values that range from negative one to positive one.

Once the inputs have been scaled in the input layer, the

new values are sent to the first hidden layer. Here the
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values are weighted, summed, and run through the transfer

function, in the case of this thesis the Tan H transfer

function. The outputs from the neurons in the hidden layer

are then sent as inputs to the output layer, where they also

are weighted, summed, and run through another Tan H transfer

function. The outputs are then transformed back into their

original scale to determine the final output of the network

for a particular set of inputs. Because of this complex

nature of neural computing, no coefficient estimates such as

the #'s in a logistic regression equation, are produced.

However, the actual weights in the individual neurons are

available as an output from the network. Table 15 shows the

weights that are applied to the inputs to the two neurons in

the hidden layer (Hidden1 and Hidden2) and the weights applied

to the output neuron's inputs, which come from the two hidden

layer neurons and the bias neuron.

D. INTERPRETING THE RESULTS OF NEURAL NETWORK MODEL ONE FOR

REENLISTMENT

The procedure for interpreting the results of an estimated

neural network model is fundamentally the same as for

interpreting the partial effects of a logistic regression

model. A base case is first established, representing the

reference values with which comparisons are made about the

partial impact of individual explanatory variables on

retention, holding all other variables constant.
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TABLE 15: INPUT WEIGHTS FOR NEURONS IN THE HIDDEN AND

OUTPUT LAYERS OF NEURAL NETWORK MODEL ONE

Input Weights for Hidden Layer Neurons

Input Hidden 1 Hidden 2
Neuron Weights Weights

BIAS 0.2701 -0.3170

CIVJOB 0.5934 1.3733

ENTRYAGE -0.7471 -0.1843

E3 0.4481 2.2858

E4 0.4818 -1.2862

E56 -1.3960 -0.7249

WHITEOTH -0.2081 0.6314

BLACK -0.7429 -0.7972

HISP 0.7407 0.4055

SNC 0.2586 1.2269

SWC 0.2492 0.6748

MNC -2.2040 0.6143

MWC 1.4103 -2.0984

TECOCC 1.4855 -1.6623

HSDEG 0.9805 -1.1199

HSCERT -0.9525 1.0637

FACTOR1 -1.0944 -1.0348

FACTOR2 -0.1112 -2.9463

Input Weights for Output Layer Neurons

Input Output Neuron
Neuron Weights

BIAS -0.1135

HIDDEN1 -0.2961

HIDDEN2 -0.4491
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The same base case will be used for neural network model

one as was used for the logistic regression model described in

Chapter V. This will facilitate the ease of comparisons

between neural network model one and the logistic regression

model. Again, in this instance the base case is derived using

the modal values for the categorical variables and the mean

values for the continuous variables. The base case individual

is a white male E-3, single with no dependents, who joined the

service at age 19.25 with a high school diploma, who feels

that he has a strong chance of getting a good civilian job if

he leaves the military, and whose satisfaction variables give

him average factor scores. Neural network model one indicates

that the base case individual will have a 6.5 percent

probability of reenlisting.

An important statistic, provided by traditional data

analysis packages such as SAS, are those which indicate the

statistical significance of the individual variables in the

model. NeuralWare provides no such statistic, and therefore

the impact of a unit change in an explanatory variable on the

output variable (in this case STATUS) should be evaluated and

considered with caution. In many cases there may be an

estimated effect on retention, yet from a statistical view a

null hypothesis of no effect would be supported.

The remainder of this section describes the effects on the

reenlistment decision of each changing independent,

explanatory variable, compared to the base case individual.
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1. Demographio Variables

a. Age Upon Entering Active Duty Service

ENTRYAGE is found to have no effect on the

reenlistment decision of the base case individual. That is,

being an additional year older or younger when initially

enlisting will have no effect on the probability of

reenlistment.

b. Race

Being an African-American minority has the same

sign as hypothesized compared to the WHITEOTH base case. The

effect of being African-American as opposed to falling in the

WHITEOTH category for the base case individual is a 0.1

percent increase in the probability of reenlistment. Being

Hispanic rather than falling in the WHITEOTH category has no

effect on the probability of reenlistment.

c. Family and Marital Status

The effects of being either married, having

dependents, or both all have the correct sign as hypothesized,

compared to the base case single with no children (SNC)

individual. The effect of SWC compared with the base case is

an increase of 0.1 percent in the probability of reenlistment.

The effect of MNC and MWC are respective increases in the

probability of reenlistment of 25.5 and 3.5 percent.
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2. Kilitary Characteristics

a. Rank

A member's rank when surveyed is found to have the

correct hypothesized sign. The more senior a member was, the

higher the probability he would reenlist. The effect of

being an E-4 rather than an E-3 for the base case individual

is a 9.5 percent increase in the probability of reenlistment.

Being an E-5 or an E-6 increased the probability of

reenlistment by i2.5 percent.

b. Military Occupation

Military Occupation is found to have no effect on

the probability of reenlistment in the neural network model.

A member with the base case characteristics will have the same

probability as a member with all of the base case

characteristics but has a technical military occupation.

3. Education Level

A member's education level was found to have the same

sign effect as hypothesized. A member who had less than a

high school diploma would have a higher probability of

reenlisting than a member who had a high school diploma. The

effect of a member not having a high school diploma in

comparison to the base case individual increases the

probability of reenlistment by 2.5 percent.
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4. Level of Perceived Employability

A member's personal level of perception towards their

employability has the correct hypothesized sign. A person who

feels that they do not have a strong chance of finding a good

civilian job if they left the military is found to have a 0.1

percent higher probability of reenlisting in the military,

compared to the base case individual.

5. Satisfaction with Military Lifestyle and Military

Benefits

An increase in a member's satisfaction with the

military lifestyle or military benefits should result in

increased reenlistment and as such, both FACTOR1 and FACTOR2

have the correct hypothesized signs. A one unit increase in

either FACTOR1 or FACTOR2 resulted in an 0.1 percent increased

probability of reenlistment for the base case individual.

Although, because of no underlying metric, it is hard to

determine the partial effects of increases in the satisfaction

variables listed in Table 7, an increase in a satisfaction

variable, all else held constant, will have a positive effect

on the probability of a member's reenlistment.

E. VALIDATION OF THE NEURAL NETWORK MODEL ONE

Neural network model one is validated in the same way as

the logistic regression model discussed in Chapter V. A 0.5

probability cutoff was used to determine the number of correct

predictions for the testing data set. That is, if the model
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predicted a probability of below 0.5 and the actual decision

was not to reenlist, then the model was assumed to make a

correct prediction. Conversely if the model predicted a

probability of less than 0.5 and the member actually

reenlisted, then the model made an incorrect prediction. The

same logic was used for predictions above 0.5

Overall, the model correctly predicted 71 out of 100 (71

percent) reenlistment decisions for the testing data set. It

correctly predicted 13 out of 22 (59.1 percent) of those

members who reenlisted, and 58 out of 78 (74.4 percent)of

those members who decided against reenlistment. Thus the

model had a false positive rate (those members who the model

predicted would reenlist, but did not) of 40.9 percent, and a

false negative rate (those members the model predicted would

not reenlist, but who did so) of 26.6 percent.

P. NEURAL NETWORK MODEL TWO

1. Model description

Neural network model two was created using the same

architecture as neural network model one, but using the

extended data set described in Chapter IV. It was constructed

using 28 input neurons, one for each explanatory variable in

the extended data set, two hidden neurons in a single hidden

layer, and one output neuron. Neural network model two had

all of the same model characteristics as neural network model

one regarding learning rate, momentum, learning transition
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point, epoch size and transfer function. The purpose behind

the creation of the second neural network model was to

evaluate the strength or weakness of a neural network model

that has been created using a data set that contains variables

that may not be theoretically sound for the problem at hand,

in this case the prediction of reenlistment in the Navy.

Therefore, neural network model two was constructed in the

same fashion as neural network model one with the exception of

using the extended data set.

Some neural network literature and researchers suggest

that the "kitchen sink" approach to developing a neural

network model is often appropriate [Ref. 7]. That is, if

there is no apparent underlying theoretical model to begin

from, or if the researcher is unfamiliar with the problem to

be modeled, the network model should initially include all

variables in a data set, and the neural network can determine

which variables or combinations of variables will effect the

output variable. In the case of this thesis, a set of

variables is added to a theoretically sound set of variables

to determine if the neural network model developed using the

"kitchen sink" methodology (neural network model two) will

resemble the model constructed using a theoretically sound

base (neural network model one).
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2. Model Results

Neural network model two was quite similar to neural

network model one at the task of predicting reenlistment in

the Navy. Neural network model two correctly predicted 72 of

100 cases in the test data set. However, as discussed in the

following chapter, the partial effects of changes in the

explanatory variables changed dramatically when the second

model was created using the extended data set. The following

chapter will also compare the results of neural network model

one with the results of the logistic regression model.
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VII. COMPARISON OF THE NEURAL NETWORK AND THE LOGISTIC

REGRESSION !.JDELS

A. NEURAL NETWORK MODEL ONE AND THE LOGISTIC REGRESSION MODEL

1. Predictive Ability of Both Models

As discussed in Chapters five and six, both nieural

network model one and the logistic regression model correctly

predicted 71 of 100 test cases. Table 16 shows that both

models also correctly predicted 13 of 22 of those members who

reenlisted and 58 of 78 of those me-ibers who decided to leave

the military. Surprisingly, the two models did not predict

the same individuals to remain with or leave the military. Of

the 100 test cases, the two models predicted 90 of 100

individuals to take the same course of action. Of the

individuals who the two models predicted would behave

differently, neural network model one correctly predicted five

of the ten cases. The logistic regression correcýly predicted

the five cases that the neural network model failed to

predict, while incorrectly predicting the cases that the

neural network model correctly predicted.

Table 16 shows that, on the training data set, both

models performed comparably. Neural network model one

performed slightly better overall, predicting correctly 479 of

the 680 (70.44 percent) training cases, compared to the
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logistic regression model which predicted correctly 477 of the

680 (70.15 percent) cases. The neural network model correctly

predicted 359 of the 434 (82.72 percent) members who decided

not to reenlist, while the logistic regression model correctly

predicted 377 (86.78 percent) of the leavers. The neural

network model had a false positive rate of 51.22 percent and

a false negative rate of 17.18 percent, compared to a false

positive rate of 59.35 percent and a false negative rate of

13.13 percent for the logistic regression model.

TABLE 16: COMPARISON OF NEURAL NETWORK MODEL ONE AND

LOGISTIC REGRESSION MODEL RESULTS

Model

Neural Logistic Neural Logistic
Network Regression Network Regression

Training Data Set Testing Data Set

Correctly 479 477 [70.15 71 71
Predicted (70.44 [71.00 [71.00

Correctly 120 100 [40.65 20 20
Predicted (48.78 [60.61 [60.61
Reenlist

Correctly 359 377 [86.87 58 58
Predicted Leave [82.72 [86.57 [86.57

False Negative [17.18 [13.13 [13.43 [13.43

False Positive [51.22 [59.35 [39.39 [39.39

A, .1809 .1239 .0644 .0836
Note: Table entries give number and [percentage correctly
predicted.

One possible measure for how well a model performed on

the testing data set is the simulation R2 discussed by Wiggins
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and Engquist, and reviewed in Chapter III of this thesis. The

formula for this measure is:

R _ (Predicted1 -Actual1 ) 2

E (ActualMean-Actual,)2

An R2 of one implies a perfect fit for the data set, while an

R2 of zero would be interpreted as fitting the data no better

than the in-sample mean. As is normally the case with

individual level data, modeling a dichotomous outcome, both

models have low R2 . The neural network model had a slightly

lower R2 than the logistic regression model on the test data

set. The W for both the test data set and the training data

set is shown in Table 16.

2. Partial Effects of Variables on Reenlistment

Table 17 shows the partial effects of individual

variables on retention for both neural network model one and

the logistic regression model, as discussed in Chapters five

and six.

The two models were very comparable at the task of

predicting who would reenlist in the Navy. If prediction is

the only question a researcher is concerned with, then the

neural network model clearly performed as well as did the

logistic regression model. However, often a researcher is

concerned with what is affecting the output variable, in this
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case reenlistment, as well as with predicting who will

reenlist.

Table 17 shows that the two models produced different

results for the partial effects of individual variables on the

probability of reenlistment.

TABLE 17: COMPARISON OF THE PARTIAL EFFECTS OF INDIVIDUAL
VARIABLES ON THE PROBABILITY OF REENLISTMENT, WITH RESPECT

TO THE BASE CASE INDIVIDUAL, FOR THE NEURAL NETWORK AND
THE LOGISTIC REGRESSION MODELS

VARIABLE NEURAL LOGISTIC
NETWORK REGRESSION

CIVJOB +0.1% *** +9.2%'

ENTRYAGE No Effect +0.5%

E4 +9.5% ** +9.1%

E5/6 +12.5% *** +15.6%

BLACK +0.1% *** +9.9%

HISPANIC No effect -1.0%

SWC +0.1% +3.0%

MNC +25.5% *** +12.1%

MWC +3.5% *** +12.4%

TECOCC No effect +2.9%

HSCERT +2.5% +2.9%

FACTOR12  +0.1% *** +4.0%

FACTOR23  +0.1% * +2.1%

Notes: I Those variables noted with * are significant at the
0.10 level, ** at the 0.05 level, and *** at the 0.01 level.
2Satisfaction with military pay and benefits. 'Satisfaction
with the military lifestyle.

Several of the variables (CIVJOB, BLACK, MNC, MWC,

FACTOR1, and FACTOR2) had partial effects which were quite
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different for the two models. The neural network model

appears to be loading the effects on reenlistment into two

variable classes, military rank and marital status. While

this is not an undesirable characteristic if a researcher's

only concern is the prediction of reenlistment, it is

undesirable if a researcher wishes to determine policy

implications from the model.

The neural network model essentially disregards the

effects of FACTOR1 (satisfaction with military pay and

benefits) and FACTOR2 (satisfaction with the miliary

lifestyle). This is a problem because FACTOR1 and FACTOR2 are

the only variables which the military can affect (although

indirectly). The military can improve pay, benefits, and the

military lifestyle, which should improve satisfaction in those

areas, which in turn will lead to higher FACTOR1 and FACTOR2

scores. Thus, the neural network model may lead a researcher

to believe that there are no policy implications associated

with variation in pay and benefits or factors affecting the

military lifestyle. Intuitively this appears to decrease the

usefulness of the neural network model.

Another apparent inadequacy of the neural network

model is its failure to assign any effect on reenlistment to

the variable CIVJOB. This variable is a member's perception

about the probability of getting a good civilian job if he

left the military. The neural network model essentially

disregards CIVJOB as having an effect on a member's
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probability of reenlistment. Again, intuitively this appears

to limit the usefulness of the neural network model.

However, upon further examination of the results,

three positive points about the neural network model should be

noted. First, the variables that the neural network found to

have no effect on the probability of reenlistment for a base

case individual (ENTRYAGE, HISPANIC, and TECOCC), were found

to be insignificant at the 0.1 level for the logistic

regression model. Second, the variables that the neural

network model found to have an effect on the probability of

reenlistment, had the same sign effect as in the logistic

regression model. Third, several of the variables in the

neural network model had partial effects which were quite

close in size to their counterparts in the logistic regression

model (E4, E5/6, HSCERT).

B. NEURAL NETWORK MODELS ONE AND TWO

As was discussed in Chapter VI, the predictive ability of

the neural network models was quite similar. By increasing

the number of variables by more than 50 percent (from 17 to 28

variables), neural network model two was able to correctly

predict one case more out of the 100 case testing data set

than did neural network model one. However the partial

effects of the independent variables that occurs when the

model is constructed on the expanded data set is disturbing.

Table 18 shows the partial effects on reenlistment of a change
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in an explanatory variable for the base case individual for

neural network models one and two. The base case individual

is the same for both models for the first 17 variables; the

base case for the extended data set is the mean or modal

values for the variables in the data set.

Table 18 shows that neural network model two, constructed

on the extended data set has drastically different partial

effects of the explanatory variables on reenlistment than did

neural network model one, which was constructed from a sound

theoretical model. Although some changes could and should be

expected from adding variables to a model, the size and

magnitude of the changes is disconcerting. For example, the

effect of being African-American rather than Caucasian for the

base case individual, goes from essentially no effect to an

increase in the probability of reenlistment of over 44

percent, simply by adding variables to the model. While some

change could be expected, this size of change is suspicious.

Another inconsistency in neural network model two is the

effect on reenlistment attributed to MILHOUR. This variable

was added to the set of explanatory variables merely to add

noise to the data set, but the neural network model implies

that adjusting the time of day that a member took the survey

by one hour later increased his chances of reenlistment by

over 19 percent.
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TABLE 18: COMPARISON OF THE PARTIAL EFFECTS OF INDIVIDUAL
VARIABLES ON THE PROBABILITY OF REENLISTMENT, WITH RESPECT
TO THE BASE CASE INDIVIDUAL, FOR NEURAL NETWORK MODELS ONE

AND TWO

VARIABLE BASE CASE NEURAL NETWORK NEURAL NETWORK
MODEL ONE MODEL TWO

CIVJOB 1 +0.1% No effect

* ENTRYAGE 19.25 No effect No effect

E4 E3 +9.5% +43.0%

E5/6 E3 +12.5% +44.1%

BLACK WHITEOTH +0.1% +44.2%

HISPANIC WHITEOTH No effect +38.1%

SWC SNC +0.1% +37.2%

MNC SNC +25.5% +28.0%

MWC SNC +3.5% +44.3%

TECOCC 0 No effect No effect

HSCERT HSDEG +2.5% No effect

FACTOR12  0.0097 +0.1% +35.2%

FACTOR23  0.0091 +0.1% +41.3%

SPACTIVE 0 +31.0%

SEATIME 27 +17.5%

OSEATIME 10 +16.1%

INCOME 14,000 +17.0%

PCSMOVE 2 +17.2%

MOMSED 12 +16.4%

OFDTYJOB 0 +15.2%

CIVJOBOF 1 +1.5%

MILHOUR 1200 +19.3%

NUMENLST 1 +17.1%

DEBT 3 +19.0%
Notes: 'Those variables noted with *** are not included in
neural network model number one. 2Satisfaction with military
pay and benefits. 3Satisfaction with the military lifestyle.
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Additionally, several of the added variables have questionable

signs. SEATIME, OSEATIME, PCSMOVE, and CIVJOBOF should

theoretically all have negative signs; an increase in any of

these areas should decrease the probability of reenlistment,

rather than increase it as neural network model two indicates.

The model developed using the extended data set which

includes variables that have no theoretical purpose in the

model (neural network model two) presents problems for a

policy analyst. If the only problem at hand is prediction

then neural network model two is slightly better than the

other two models. However, if policy implications are to be

determined from the model, neural network model number two,

and by extension any model developed without a sound

underlying theoretical model, should not be used for policy

analysis.

The following chapter concludes this thesis and makes

recommendations for follow-on research concerning the use of

neural networks in the military manpower and personnel

analysis area.
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VIII. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS

This thesis compared two neural network models and a

logistic regression model at the task of predicting

reenlistment in the Navy. Reenlistment behavior was modeled

for males in the ranks of E-3 to E-6 using 17 variables which

were classified into demographic/personal, military

characteristics, perceived probability of civilian employment,

educational level, and satisfaction with military life and

military benefits. Two subsamples were created from the 1985

DoD Officer and Enlisted Personnel Survey; a training sample

consisting of 680 observations, and a testing sample

consisting of 100 observations.

The neural network models were constructed using

NeuralWare software and its default settings, with two hidden

neurons in one single hidden layer. Neural network model one

was compared to a logistic regression model developed at the

Naval PostGraduate School, by George Thomas and Kathryn

Kocher. The two models were constructed using the same

variables.

At the task of predicting reenlistment the two models

created using the same variables performed in a very similar

manner. Both models correctly predicted 71 out of the 100
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reenlistment decisions in the testing data set. In addition,

both models correctly predicted the same number of members who

would reenlist, and who would leave the Navy. The logistic

regression model had a slightly higher simulation R2 (.0836)

than did the neural network model (.0644), but this did not

affect the predictive ability of the neural network model.

For those concerned only with the task of prediction,

neural network model one performed as well as did the logistic

regression model. However, military manpower and personnel

analysts are often more concerned with the policy implications

that a model may suggest, rather than simply the predictive

power of the model. That is, they are more concerned with

,!hat the partial effects of policy variables are, than with

how well the model predicts overall.

Neural network model one was found to be deficient as a

tool for policy analysts. It ignored those variables which

changes in policy can affect, and ascribed most of the effects

on reenlistment to those variables in the demographic/personal

category which policy changes cannot effect. Neural network

model one implies that, for a base case or "typical"

individual, improvements in those areas which make up military

lifestyle and military benefits, and are likely to lead t.

higher scores on the composite satisfaction variables, have no

effect on the probability of that member's reenlistment.
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Another deficiency of both neural network models is the

lack of a statistical test for the significance of either

individual variables or the model as a whole. This deficiency

does not allow the researcher to test hypotheses about the

statistical significance of an estimated model or the

explanatory variables. For example, when using logistic

regression, often there are cases where a change in an

explanatory variable will have an effect on the output

variable (in this case reenlistment), but the input variable

is found not to be statistically significant at some cutoff

level. In the neural network models there may be variables

which have an estimated effect on reenlistment, yet from a

statistical view a null hypothesis of no effect would be

supported; there is no way to know this from the results of

the neural network model. This is not a serious problem for

those researchers concerned with only the predictive

capability of a model, but it does present problems for

researchers who wish to make policy recommendations based on

the model.

Some neural network literature suggests that the "kitchen

sink" approach to developing a neural network model is often

appropriate (Ref. 7]. That is, if there is no apparent

underlying economic model, or if the researcher is unfamiliar

with the problem to be modeled, then the neural network model

should initially include all the variables in the data set to

be examined. The n3ural network should then be allowed to
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determine which variables or combinations of variables will

affect the output variable. This methodology is in contrast

with basic econometric procedures (Ref. 16.) This thesis

tested the "kitchen sink" method of model building by adding

variables to the original neural network model, some of which

had a theoretical background for predicting reenlistment, and

some of which were noise for the neural network model to

filter. Neural network model two did as well as both the

logistic regression model and neural network model one at

prediction, but was found to be deficient for policy

applications.

B. POLICY IMPLICATIONS

This thesis showed that although neural networks have

promise as tools for analysts in the military manpower and

personnel field, they cannot yet be used alone for modeling.

Neural networks do have applications in these fields, but they

should not be used as replacements for more traditional

methods of data analysis.

Neural networks have shown promise as predictors. The

literature reviewed in Chapter III was nearly unanimous in its

support for the use of neural networks as forecasting tools.

Although the data set in this thesis yielded a neural network

little better at predicting reenlistment than a logistic

regression model, the use of neural networks alongside more
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traditional models as predictors is warranted in other

situations not well suited to traditional methods.

The use of neural networks to explain the partial effects

of changes in variables should be approached with extreme

caution. The lack of statistical tests for evaluating the

significance of individual variables or the model as a whole

is a major drawback to the use of neural networks. At this

time it is recommended that neural networks not be used for

developing models to be used for policy analysis.

C. RECOMMENDATIONS

As with most empirical studies, this thesis leaves room

for further research. Some recommendations for follow-on

research examining the use of neural networks in the manpower

and personnel analysis field are discussed below.

One area of research which should be pursued is the

comparison of neural network models produced by two different

neural network programs. This question is suggested by the

widely different results of the neural network and the

logistic regression models discussed in this thesis. The

policy implications of differing model results from different

types of software need to be explored.

Another area of research yet unexplored is whether the

results obtained by a researcher using a neural network model

can be duplicated by a follow-on researcher. Because the

initial starting weights of a neural network are set randomly,

109



is there a way to duplicate the construction of a neural

network model so that follow-on researchers can attempt to

improve on previous research? The lack of capability to

duplicate research would decrease the usefulness of neural

networks for the military manpower and personnel analyst.

Further research into the use of neural networks in areas

where traditional methods of modeling are weak is also

warranted. The problem of modeling reenlistment behavior has

been extensively researched, and has been explained quite well

using logistic regression. A neural network showed little

advantage over a traditional form of data analysis. However,

areas exist where traditional methods of modeling are weak.

Examples of these weakly modeled domains are those areas such

as small data sets, data sets where the dependent variable

takes on large numbers of one response and small numbers of

another, and data sets where the candidate explanatory

variables are all highly correlated to each other. Further

research should be done to determine if neural networks may be

able to improve modeling in those areas.

Finally, the use of neural networks in areas where it's

claimed they are strong should be evaluated. The use of

neural networks should be examined in areas where

relationships between dependent and independent variables are

unknown. In addition, evaluations should be done to determine

if researchers with no statistical background can use neural

networks effectively as modeling tools. Neural network
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software makers claim that neural networks are at their

strongest in these areas. Neural networks should be applied

to data sets with many variables and the resulting models

examined to determine if they make sense intuitively.

In summary, neural networks show some promise as tools for

the military manpower and personnel analyst. They are a

state-of-the-art technology on which millions of dollars of

research and development is being spent (much of it at

government expense). Neural networks are innovative tools

that show some potential for applications in the future.

However, researchers should proceed with caution in the use of

neural networks, using them alongside more traditional

modeling methods for the near future.
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